Remarks on Immersions in the Metastable Range Dimension

Carlos Biasi

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
E-mail: biasi@icmc.sc.usp.br

Alice K.M. Libardi

Departamento de Matemática, IGCE-UNESP, Bela Vista, 13506-700 Rio Claro SP, Brazil
E-mail: alicekmil@ms.icc.unesp.br

Let $f : M \to N$ be a continuous map between two closed manifolds such that $f_* : H_*(M, \mathbb{Z}_2) \to H_*(N, \mathbb{Z}_2)$ is an isomorphism. Suppose that N immerses in \mathbb{R}^{n+k} for $5 \leq n < 2k$. Then M also immerses in \mathbb{R}^{n+k}. We use techniques of normal bordism theory to prove this result which complements the work Biasi et al. ([BGL]). We also present conditions for a map to be homotopic to an immersion.

May, 2002 ICMC-USP

Key Words: bordism, normal bordism, immersion of manifold, localization

1. INTRODUCTION

This paper is concerned about conditions which on there exist immersions in the metastable range dimension, which were already considered in [BGL]. For the two problems we have considered, we give conditions on the induced maps in homology groups with \mathbb{Z}_2 coefficients.

For the first problem, let us consider $h : M^n \to X^{n+k}$ a continuous map from a closed smooth connected n-manifold into a smooth connected $(n+k)$-manifold, $5 \leq n < 2k$, bordant to an immersion, in the sense of Conner and Floyd. When is h homotopic to an immersion? By exploiting the works of Koschorke ([K1],[K2],[K3]) and Salomonsen ([S]) we obtain an answer in terms of the induced homology groups maps.

For the second problem, let $f : M \to N$ be a continuous map between two closed smooth connected n-dimensional manifolds. Suppose that N immerses in \mathbb{R}^{n+k}, for some k, with $5 \leq n < 2k$. Under which conditions on f does M immerses in \mathbb{R}^{n+k}? The case when it is supposed that M immerses in \mathbb{R}^{n+k} and it is looking for conditions on f such that N also immerses in \mathbb{R}^{n+k} has been considered in the work of Biasi et al. ([BGL]) and Glover et al. ([GH1],[GH2],[GM1]).
We will use a normal bordism approach to investigate these problems. We prove the following main results:

Theorem A: Let \(h : M^n \to X^{n+k} \) be a continuous map from a closed smooth connected \(n \)-manifold into a smooth connected \((n+k)\)-manifold, \(5 \leq n < 2k \), and let \(g : M \to BO(q) \), for \(q \) large, be the classifying map of \(\nu_h \), the stable normal bundle of \(h \). Suppose that

\[(h, g) : M \to X \times BO(q), \quad q \text{ large}, \]

induces

\[(h, g)_* : H_i(M, \mathbb{Z}_2) \to H_i(X \times BO(q), \mathbb{Z}_2) \]

which is an isomorphism for \(i < n-k \) and an epimorphism, for \(i = n-k \).

Then if \(h \) is bordant to an immersion, \(h \) is homotopic to an immersion.

Theorem B: Let \(M \) and \(N \) be a closed connected \(n \)-manifolds and let \(f : M \to N \) be a continuous map such that

\[f_* : H_i(M, \mathbb{Z}_2) \to H_i(N, \mathbb{Z}_2) \]

is an isomorphism, for \(i \geq 0 \).

Then if \(N \) immerses in \(\mathbb{R}^{n+k} \) for \(5 \leq n < 2k \), so does \(M \).

The work is divided in four sections. In Section 2, we present two exact sequences of bordism groups. One of them is a generalization of the exact sequence normal bordism group given by Salomonsen [S], by using identifications of some normal bordism groups.

In Section 3, we prove Theorem A and B and in Section 4, we present an application using a non standard obstruction theory.

Notations and conventions: In this work, \(C \) will denote the class of all torsion groups where the torsion is odd.

2. EXACT SEQUENCES OF BORDISM GROUPS

Given a topological space \(X \) and a virtual bundle \(\phi, \Omega_i(X, \phi) \) denotes the \(i \)-th normal bordism group of \(X \) with coefficient \(\phi \). For the definition and more details about normal bordism see [K1] or [S]. We adopt the Salomonsen convention.

We get a generalization of the exact sequence normal bordism group given by Salomonsen [S], by using identifications of some normal bordism groups.

For each \(q \), let \(\varphi^q = \varepsilon^{p+q} - (\alpha^p \times \gamma^q) \) and \(\psi^q = \gamma^q - \varepsilon^q \) be virtual bundles over \(X \times BO(q) \), where \(\gamma^q \) denotes the universal vector bundle over \(BO(q) \). We can construct a fibre bundle \(\tilde{V}_k(\psi^q) \to X \) with \((k-1)\)-connected fibre and we define a \(k \)-dimensional vector bundle \(\mu^k \) over \(\tilde{V}_k(\psi^q) \) such that \(\mu^k \oplus \varepsilon^q \simeq \varepsilon^k \oplus \gamma^q \). ([S]).

Let us consider \(\theta' : \tilde{V}_k(\psi^q) \to BO(k) \) the classifying map of the vector bundle \(\mu^k \), which is a high homotopy equivalence, for \(k \) large enough.

The following diagram is commutative:
where θ_*, induced by θ', is an isomorphism for q large.

Also, for q large, $\Omega_n(X \times BO(q), \varphi^q) \simeq \pi_n^{S \hat{\pi} + q}(T(\alpha) \wedge MO(q))$, where $T(\alpha)$ is the Thom space ([K1]). Since $T(\alpha)$ is $(p - 1)$-connected we can conclude that $\eta_n(X) \simeq \Omega_n(X \times BO(\xi), \varphi^q)$ and this normal bordism group does not depend of α^p.

Let us denote by $I_n(X)$ the bordism group of continuous maps $h : M^n \to X^{n+k}$, which are homotopic to an immersion and let $\mathcal{F} : I_n(X) \to \eta_n(X)$ be the forgetful map.

Let us consider X a $(n + k)$-manifold and let ν^p_X be the stable normal bundle of X. If $\varphi^k = \varepsilon^{p+k} - \nu^p_X \times \gamma^k$, for p large, an element of $\Omega_n(X \times BO(k), \varphi^k)$ can be considered as $[M^n, (h, g), H]$ where $(h, g) : M^n \to X \times BO(k)$ is a continuous map,

$$H : TM \oplus h^*(\nu_X^p) \oplus g^*(\gamma^k) \to \varepsilon^{p+k} \oplus \varepsilon^n$$

is a stable isomorphism and g is the classifying map of the stable normal bundle ν_X^p. Therefore, $\Omega_n(X \times BO(k), \varphi^k)$ can be identified with $I_n(X)$.

By using these identifications and diagram (I), in Salomonsen sequence ([S]) we get the following exact sequence, for q large and $n \leq 2k + 2$.

$$\begin{array}{ccc}
(II) & \longrightarrow & \Omega_{n-k}(X \times BO(q) \times P^\infty, \Gamma_k) \longrightarrow I_n(X) \xrightarrow{\mathcal{F}} \eta_n(X) \xrightarrow{\tilde{\gamma}_{k-1}} \\
& \longrightarrow & \Omega_{n-k-1}(X \times BO(q) \times P^\infty, \Gamma_{k-1}) \longrightarrow \ldots
\end{array}$$

where $\Gamma_k = \nu_X^p \times \gamma^q \oplus (\varepsilon^{q-k} - \gamma^q) \otimes \lambda - \varepsilon^{p+q+n-k}$ and λ is the canonical line bundle over the real projective space P^∞.

Let us consider now ψ a virtual vector bundle over M.

From the exact sequence of Salomonsen, for $5 \leq n < 2k$, we have the following exact sequence:

$$\begin{array}{ccc}
(III) & \longrightarrow & \Omega_n(\tilde{V}_k(\psi), TM^0) \xrightarrow{\pi_M} \Omega_n(M \times TM^0) \xrightarrow{\gamma_M} \Omega_{n-k-1}(M \times P^\infty, \Phi) \longrightarrow \ldots
\end{array}$$

where $\Phi = -(n - k - 1)\lambda - \lambda \otimes \psi + TM^0$ and γ_M is defined by the construction of the sequence.

We recall that if $\psi = h^*TX - \varepsilon^k \oplus TM$, then $\gamma_M([M])$ is the invariant $\omega_\xi(\nu_h)$ defined by Koschorke ([K2]), ([K3]), which is an obstruction to the existence of a monomorphism from $M \times \mathbb{R}^k$ into γ_h.

Publicado pelo ICMC-USP
Sob a supervisão CPq/ICMC
Here, $[M] = [M,1_M,t_M] \in \Omega_n(M,TM^0)$ is the fundamental class of M where $t_M : TM \oplus \varepsilon^n \to \varepsilon^n \oplus TM$ is the isomorphism which interchange factors.

3. PROOFS OF THEOREMS A AND B

Proof of Theorem A:
Let $h : M \to X$ be a continuous map from a closed connected smooth n-dimensional manifold M into a smooth connected $(n+k)$-dimensional manifold X.

Let us consider now the following commutative diagram, where the left hand vertical sequence is (III) and the right hand vertical sequence is (II) and $(h,g)_*$ and $((h,g) \times Id)_*$ are induced maps of (h,g) in convenient normal bordism groups.

\[\begin{array}{ccc}
\Omega_n(M,TM^0) & \xrightarrow{(h,g)_*} & \gamma_n(X) \\
O_{n-k-1}(M \times \mathbb{P}^\infty, \Phi) & \xrightarrow{((h,g) \times Id)_*} & O_{n-k-1}(X \times BO(q) \times \mathbb{P}^\infty, \Gamma_{k-1}) \\
\end{array} \]

Suppose that h is bordant to an immersion. Then

\[0 = \tilde{\gamma}_{k-1}([M,h]) = ((h,g) \times Id)_* (\gamma_M([M])) . \]

Since $(h,g) : M \to X \times BO(q)$, q large, induces

\[(h,g)_* : H_i(M,\mathbb{Z}_2) \to H_i(X \times BO(q),\mathbb{Z}_2) \]

which is an isomorphism for $i < n-k$ and an epimorphism for $i = n-k$, we conclude that $((h,g) \times Id)_*$ is a C-isomorphism for $i = n-k-1$ and then ker($((h,g) \times Id)_*$) $\in C$.

We recall that the elements of image of γ_M have order a potency of 2. Therefore $\gamma_M([M,h]) = 0$ and h is homotopic to an immersion.

Proof of Theorem B:
We recall that under hypotheses of Theorem B,

\[f_* : \Omega_n(M,f^*TN^0) \to \Omega_n(N,TN^0) \]

is a C-isomorphism and $f^*(\beta_2) = \alpha_2$, where $\alpha = \nu_M$ and $\beta = \nu_N$ are the stable normal bundles of M and N and α_2 and β_2, the respectively 2-localization ([BGL]).

Let us consider the following commutative diagram
REMARKS ON IMMERSIONS IN THE METASTABLE RANGE DIMENSION

\[\Omega_n(\tilde{V}_k(\psi_M), f^*T^0) \xrightarrow{G_*} \Omega_n(\tilde{V}_k(\psi_N),TN^0)\]

\[\Omega_n(M, f^*T^0) \xrightarrow{f_*} \Omega_n(N, TN^0)\]

\[\gamma'_M \xrightarrow{\gamma_N} \Omega_{n-k-1}(M \times P^\infty, \phi_M) \xrightarrow{F_*} \Omega_{n-k-1}(N \times P^\infty, \phi_N)\]

where the vertical sequences are obtained from (III), \(G_*\) and \(F_*\) are given in [S], \(\psi_M = \varepsilon^{n+k} - TM \oplus e^k\) and \(\psi_N = \varepsilon^{n+k} - TN \oplus e^k\).

We observe that \((\pi'_M)_*\) is the induced map of \(\pi_M\) in normal bordism groups with virtual bundle \(f^*TN^0\).

If \(N\) immerses in \(\mathbb{R}^{n+k}\), \((\pi_N)_*\) is sobjective and since \(f_* : H_i(M, \mathbb{Z}_2) \rightarrow H_i(N, \mathbb{Z}_2)\) is an isomorphism for \(i \geq 0\), then \(F_*\) is a \(C\)-monomorphism. Therefore \((\pi'_M)_*\) is a \(C\)-epimorphism and since every element of the image of \(\gamma'_M\) has order a potency of 2 ([S]), we conclude that \((\pi'_M)_*\) is an epimorphism.

Let us consider now the commutative diagram

\[
\begin{array}{ccc}
\pi_{n+p}^*(T\tilde{\alpha}) & \xrightarrow{\pi_{n+p}^*(Tf^*(\tilde{\beta}))} & \pi_{n+p}^*(Tf^*\alpha) \\
(\pi_M)_* & & (\pi'_M)_* \\
\pi_{n+p}^*(T\alpha) & \xrightarrow{\pi_{n+p}^*(Tf^*\alpha)} & \pi_{n+p}^*(Tf^*\alpha) \\
\end{array}
\]

where \(\tilde{\beta}\) and \(\tilde{\alpha}\) denote the pull back of \(\beta\) and \(\alpha\) by \(\pi_N\) and \(\pi_M\), respectively; then two horizontal maps are \(C\)-isomorphisms.

We conclude that \((\pi_M)_*\) is a \(C\)-epimorphism and since the elements of the image of \(\gamma_M\) has order a potency of 2, the result follows.

\[\square\]

4. APPLICATIONS

Let \(M\) and \(N\) be closed smooth manifolds of dimension \(n\) and \((n + k)\), respectively and let \(f : M \rightarrow N\) be a continuous map. Define \(U_f \in H^k(N, \mathbb{Z}_2)\) to be the image of the
fundamental class $[M] \in H_n(M, \mathbb{Z}_2)$ by the composite

$$H_n(M, \mathbb{Z}_2) \xrightarrow{f_*} H_n(N, \mathbb{Z}_2) \xrightarrow{D_N^{-1}} H^k(N, \mathbb{Z}_2)$$

where D_N denotes the Poincaré duality isomorphism.

We also consider the following commutative diagram:

$$
\begin{array}{ccc}
H^p(N, \mathbb{Z}_2) & \xrightarrow{\cup U_f} & H^{p+k}(N, \mathbb{Z}_2) \\
\downarrow D_M \circ f^* & & \downarrow D_N \\
H_{n-p}(M, \mathbb{Z}_2) & \xrightarrow{f_*} & H_{n-p}(N, \mathbb{Z}_2)
\end{array}
$$

Theorem 1: Let M and N be closed smooth manifolds of dimension n. Suppose that

$$H_i(M, \mathbb{Z}_2) \simeq H_i(N, \mathbb{Z}_2), \text{ for all } i \geq 0$$

and there exists $f : M \to N$ with $\deg f = 1$. Then $f_* : H_i(M, \mathbb{Z}_2) \to H_i(N, \mathbb{Z}_2)$ is an isomorphism, for $i \geq 0$.

Proof: Since M and N have dimension n, we have that $U_f \in H^0(N, \mathbb{Z}_2)$ and $U_f = \deg_2 f$.

Therefore $\cup U_f$ is a multiple of $\deg_2 f$ and since $\deg_2 f = 1$, we have that $\cup U_f : H^p(N, \mathbb{Z}_2) \to H^p(N, \mathbb{Z}_2)$ is the identity map, for $p \geq 0$ and

$$f_* : H_{n-p}(M, \mathbb{Z}_2) \to H_{n-p}(N, \mathbb{Z}_2)$$

is onto, for all $p \geq 0$. But $H_i(M, \mathbb{Z}_2) \simeq H_i(N, \mathbb{Z}_2)$, $i \geq 0$, and the result follows. □

Corollary 2: Let M and N be closed smooth n-manifolds with isomorphic homology groups. Suppose that there exists $f : M \to N$ with $\deg_2 f = 1$. Then M immerses in \mathbb{R}^{n+k}, $5 \leq n < 2k$, if and only if N immerses. □

Let M and N be closed smooth n-manifolds. Given $x_0 \in M^n$ and $y_0 \in N^n$, let us take D_1^n and D_2^n disks containing x_0 and y_0, respectively, for which there exists a homeomorphism $h : D_1^n \to D_2^n$ with $h(x_0) = y_0$.

We denote by $A = \partial D_1$, $M_{n-1} = M^{(n-1)} \cup A$, where $M^{(n-1)}$ is the $(n-1)$-skeleton of M, $Y = N - h(D_1)$, $f_0 = h|_A$ and

$$\chi_{n-1}^n : H^n(M, A, \pi_{n-1}(Y)) \to H^n(M, A, H_{n-1}(Y))$$
is the homomorphism induced in cohomology by the Hurewicz homomorphism.

Let us suppose that \(f_0 \) extends to \(M_{n-1}, Y \) is \((n-1)\)-simple and \(H_{n-1}(A, \mathbb{Z}) \) is a free group.

Theorem 3: Suppose that \(M^n \) and \(N^n \) are such that \(H_*(M, \mathbb{Z}_2) \cong H_*(N, \mathbb{Z}_2) \).

If \(\chi_n^{n-1} \) is a monomorphism and there exists a homomorphism \(\psi : H_n(M, \mathbb{Z}) \to H_n(N, \mathbb{Z}) \) such that \((f_0)_* = \psi \circ i_* \), with \(i_* : H_*(A, \mathbb{Z}) \to H_*(M, \mathbb{Z}) \) induced by the inclusion, then there exists \(f : M \to N \) with \(\deg_2 f = 1 \).

Proof: In these conditions \(f_0 \) extends to \(f : M \to N \) (see [B]) with \(f(M - D_1) = N - f(D_1) \).

By excision \(H_n(M, \mathbb{Z}_2) \) (resp. \(H_n(N, \mathbb{Z}_2) \)) is isomorphic to \(H_n(M, M - x_0, \mathbb{Z}_2) \) (resp. \(H_n(N, N - y_0, \mathbb{Z}_2) \)), which is isomorphic to \(H_n(D_1, D_1 - x_0, \mathbb{Z}_2) \) (resp. \(H_n(f(D_1), f(D_1) - y_0, \mathbb{Z}_2) \)) and the result follows.

REFERENCES

K2. ————. The Singularity Method and Immersions of m-manifolds into Manifolds of dimensions 2m - 2, 2m - 3 and 2m - 4. *Lecture Notes in Mathematics* 1350 (1988) - Springer Verlag.

