Topological Triviality of Family of Functions and Sets

Alexandre C. Fernandes

Universidade Federal do Ceará, Centro de Ciências, Departamento de Matemática, Av. Humberto Monte, s/n Campus do Pici - Bloco 914, Fortaleza-Ceará-Brasil
E-mail: alex@mat.ufc.br

Carlos H. Soares*

URCA - Universidade Regional do Cariri, Campus Crajubar, Departamento de Matemática, Av. Leão Sampayo km 2 s/n, triângulo, CEP 63040-000 - Juazeiro do Norte - Ceará - Brasil
E-mail: humberto@urca.br

Raimundo N. Santos

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos, SP, Brazil
E-mail: rnonato@icmc.usp.br

Keywords: Condition Regularity of Stratifications, Topological Triviality of families and sets, controlled vector fields, Uniform Milnor’s radius.

Subject classification: 58C27

In this article we are presenting one of the subjects most interesting in the Theory of Singularities, to know, the topological triviality of families of functions and sets. We present, briefly, definitions, examples and some of the results most important, in if treating to real singularities May, 2005 ICMC-USP.

1. INTRODUCTION.

Given an object V in the Euclidean space $\mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$, we can look at V as a 1-parameter family of objects in \mathbb{R}^2. In fact, let us consider $V_t = \{(x, y) : (x, y) \in V\}$. This is a classic perspective which appears, for example, in the principle of Cavallieri used for the calculation of volumes.

A technique very present in Singularity Theory explores the inverse way above described. For example, Let $f : \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R} \rightarrow \mathbb{R}$; $f(0 \times \mathbb{R}) = 0$ be a family of functions $f_t : \mathbb{R}^2 \rightarrow \mathbb{R}$; $f_t(x, y) = f(x, y, t)$. Associated to this family we have the following family of sets $X_t =$

* Financial support from Funcap, process #882/03
Then, from the object $X = f^{-1}(0) \in \mathbb{R}^3$, it is possible to know the local topological property of the family X_t. In this context, H. Whitney introduced the following concept of regularity of an analytic family of analytic sets X_t in \mathbb{R}^n, through $0 \in \mathbb{R}$, with the property that the singular set of $X = \{(x,t) : x \in X_t\}$ is contained in $Y = 0 \times \mathbb{R}$ (t-axis) and $X - Y$ is a smooth analytic subset in $\mathbb{R}^n \times \mathbb{R}$ which is dense in X.

(a) **condition:** X is (a)-regular on the t-axis Y if for each $y \in Y$ the following holds: if (p_i) is a sequence in $X - Y$; $p_i \to y$, and the sequence of tangent planes $T_{p_i}(X - Y)$ converge to a plane τ (in the appropriated Grassmaniann), then $T_y Y \subset \tau$.

(b) **condition:** X is (b)-regular on the t-axis Y if for each $y \in Y$ the following holds: if (p_i) and (y_i) are pairs of sequence of points in $X - Y$ and Y respect. ; $p_i \to y$, $y_i \to y$ and the sequence of lines $p_i y_i$ converge to a line λ and the sequence of tangent planes $T_{p_i}(X - Y)$ converge to a plan τ, then $\lambda \subset \tau$.

Example A. Let $X_t = \{(x,y) : y^2 = tx^2\}$. It is easy to see that X is not (a)-regular on the t-axis. We notice that the local topological type of $(X_t, 0)$ (i.e., the topological type of X_t in a neighborhood of $0 \in \mathbb{R}^2$) is not constant.

(b)-regularity implies (a)-regularity. Thus, the above family X is not (b)-regular.

Example B. Let $X_t = \{(x,y) : y^2 = x^3 + tx^2\}$. Here, X is (a)-regular on the t-axes and, on the other hand, from the following theorem we can conclude that X is not (b)-regular on the t-axis, because the local topological type of X_t, is not constant.

Theorem 1.1 (Thom-Mather, 1970). If X is (b)-regular on the t-axis, then X is topologically trivial on the t-axis, i.e., there exists a local homeomorphism $\phi : U \times \mathbb{R} \to \phi(U \times \mathbb{R}) \subset \mathbb{R}^n \times \mathbb{R}$ of the form $\phi(x,t) = (\varphi(x,t), t)$; $\varphi(0,t) = 0$, $X = \phi(X_{t_0} \times \mathbb{R})$, $U \times \mathbb{R}$ is a neighborhood of t-axis, for some t_0.
Here it is necessary to define the topological triviality to family of sets.

Definition 1.1. Let X_t be a family of subsets containing the origin of \mathbb{R}^n and, as usual, let $X = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} \mid x \in X_t\}$. X is topologically trivial along the t-axis if there exists a local homeomorphism, on its image, $\Phi : U \times \mathbb{R} \to \mathbb{R}^n \times \mathbb{R}$ of type $\Phi(x,t) = (\phi(x,t), t)$ such that $X = \Phi(X_{t_0} \times \mathbb{R})$ in a neighborhood $U \times \mathbb{R}$ of the t-axis, and for some $t_0 \in \mathbb{R}$.

Then, we can review Thom-Mather’s theorem saying that (b)-regularity implies the topological triviality. On the other hand, the example B shows that it may be the case that (a)-regularity occurs and the topological triviality does not. The following analysis will be inspired in the phenomenons described above. To be more precise it is natural to ask what condition, preferably minimal, can be added to an (a)-regularity so that we have a topological triviality.

In example B we have that the local topological type of X_t (in a neighborhood of the origin) does not coincide with the topological type of X_0 (in a neighborhood of the origin) for $t \neq 0$, because for a disk $B(0,r)$ centered in the origin of \mathbb{R}^2 with radius $r > 0$ sufficiently small, we have $X_t \cap B(0,r)$ has four semi-branches through the origin and $X_0 \cap B(0,r)$ has only two semi-branches through the origin. Observe that, the deformation from X_t to X_0 happens as if we had pulled the loop of a shoe lace. Meanwhile, occurs the tangency between boundary of $B(0,r)$, in the case of the sphere $S(0,r)$, and X_s for some s between 0 and t, as in the figure below:

![Diagram](attachment:image.png)

Uniform Milnor’s radius: Let X_t be a family of subsets containing the origin of \mathbb{R}^n and $X = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} \mid x \in X_t\}$. We say that X has Uniform Milnor’s radius if there exist $\epsilon > 0$ such that $X \subseteq C(0,r)$, \forall $0 < r \leq \epsilon$, in which $C(0,r)$ refers to the cylinder $S(0,r) \times \mathbb{R}$.

The name given for the regularity condition above is motivated by a result from J. Milnor which state the following: if H is a hypersurface in \mathbb{C}^n with isolated singularity in the origin, then there exists $\epsilon > 0$ such that $H \subseteq S(0,r)$, \forall $0 < r \leq \epsilon$, in the $S(0,r)$ refers to the sphere of dimension $2n - 1$, in \mathbb{C}^n, of radius r and center in the origin.

At the end of the 80’s, K. Bekka proved the following result:

Theorem 1.2 (K. Bekka, [Be] [Be-Ko]). Let X_t be a family of subsets containing the origin of \mathbb{R}^n and $X = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} \mid x \in X_t\}$. If X is (a)-regular over the t-axis and has uniform Milnor’s radius, then X is topologically trivial along of the t-axis.

Publicado pelo ICMC-USP
Sob a supervisão CPq/ICMC
From the above result, it is natural to question the independence of the regularity condition admitted in the hypothesis of K. Bekka theorem. This is what we will do in the following paragraph.

As seen in example B, X is a family (a)-regular over t axis that does not have uniform Milnor’s radius. Therefore (a)-regularity does not cause uniform Milnor’s radius. Now consider

$$X_t = \{(x, y) \in \mathbb{R}^2 \mid \cos(t)x - \sin(t)y(x^2 + y^2) = 0\}$$

and $X = \{(x, y, t) \in \mathbb{R}^2 \times \mathbb{R} \mid (x, y) \in X_t\}$. We can see, given a sequence $p_i = (x_i, y_i, t_i)$ with $x_i \to 0$, $y_i = 0$ and $t_i = \frac{\pi}{2}$, that X is not (a)-regular on t-axis and, on the other hand, X has uniform Milnor’s radius (cf.[Stos]). However, using results of H. King, which will be described next, we can still prove that X is topologically trivial along of the t-axis.

Let’s begin with the following result:

Theorem 1.3 (H. King, [K]).

Suppose that $f_t : \mathbb{R}^n \to \mathbb{R}^p$, $n \geq p$, is a continuous family of polynomials and that there exists a neighborhood $V \subset \mathbb{R}^n$, $0 \in V$ such that, if there is $x \in V$ with $\text{rank}(df_t(x)) < p$ for some $t \in \mathbb{R}$, then $x = 0$ (we call this condition good deformation). Additionally, if the family of $f_t^{-1}(0)$ has uniform Milnor’s radius, then there is a family of homeomorphisms $h_t : \mathbb{R}^n \to \mathbb{R}^n$, with $h_t(0) = 0$, that trivializes the family, that is, $f_t \circ h_t = f_0$ in a neighborhood of the origin. In particular, the family of the zero set is topologically trivial.

As a good example, we can verify in the previous case that a family of functions $f_t(x, y) = \cos(t)x - \sin(t)y(x^2 + y^2)$ has good deformation and that the family $f_t^{-1}(0)$ has uniform Milnor’s radius. However, the family is topologically trivial. It is not always easy to verify if there exists the uniform Milnor’s radius, because this assertion depends on the analysis of the behavior of the matrix $Jf_t(x)$ in relation to the position vector x in the set $f_t^{-1}(0)$. However if we have good deformation and we manage to decide if the zero sets are homeomorphic for each time t, we still have topological triviality. This is the next result.

Theorem 1.4 (H. King, [K]). Let $f_t : \mathbb{R}^n, 0 \to \mathbb{R}^p, 0, t \in \mathbb{R}$, be a family with good deformation. Suppose that, for each $t \in \mathbb{R}$, $f_t^{-1}(0)$ are homeomorphics. Then, the family f_t is topologically trivial.

In the next section we approach a class of families that satisfies the hypothesis of K. Bekka’s Theorem and also the hypothesis of H. King’s Theorem, mentioned above (cf. [Stos]). As we have not presented, so far any proof, we will make a demonstration in the next section that exhibits some usual techniques of the singularity theory. The following theorem, due to Buchner and Kucharz, which we will present and prove only in the case of function of two variables, in fact is still valid for more variables and has analogous formulations for applications of several variables.

We acknowledge Phd. Maria Aparecida Ruas for her interest and suggestions presented.
2. THEOREM ON ISOLATED SINGULARITY

Let $\alpha = (\alpha_1, \alpha_2)$ be a pair of positive integers numbers and β a positive integer number. A function $P : \mathbb{R}^2 \to \mathbb{R}$ is called weighted homogeneous of type (α, β) if $P(r^{\alpha_1}x_1, r^{\alpha_2}x_2) = r^\beta P(x)$, $\forall r \in \mathbb{R}, x = (x_1, x_2)$.

Ex.: $P(x, y) = x^2 - y^3$ is weighted homogeneous of type $(3, 2); 6$.

Given an analytic function $f : \mathbb{R}^2 \to \mathbb{R}$, we define $w(f, \alpha)$ as the minimum of the numbers $\alpha_1 t_1 + \alpha_2 t_2$ where the monomial $x_1^{t_1}x_2^{t_2}$ appears with coefficient different from zero in the Taylor’s expansion of f.

Definition 2.1. We say that a function $f : \mathbb{R}^2 \to \mathbb{R}$ is strongly not degenerated if $\forall x \in \mathbb{R}^2 \setminus \{0\}$ the differential $d_x f$ is surjective.

Definition 2.2. A function $F : U \times \mathbb{R} \to \mathbb{R}$, where U is a neighborhood of the origin in \mathbb{R}^2, is strongly admissible by (α, β) if F may be written in the form $F = f + g$ with $f, g : U \times \mathbb{R} \to \mathbb{R}$ satisfying:

(I) f and g are of class C^2, $g \cdot \frac{\partial g}{\partial t}$ are of class C^k on the $x-$variable where $k > \max\{\frac{\beta}{\alpha_1}, \frac{\beta}{\alpha_2}\}$;

(II) For each $t \in \mathbb{R}$, $f_t = f(\cdot, t)$ is the restriction to U of a function strongly not degenerated of type (α, β);

(III) $w(T^{k-1}g_t, \alpha) > \beta, \forall t \in \mathbb{R}$, where $T^k(.)$ denote the Taylor’s polynomial of degree k.

Remark: $w(T^k g_t, \alpha) > \beta$ because of (I) $w(x_1^{t_1}x_2^{t_2}) > \beta$ if $i_1 + i_2 \geq k$.

Theorem 2.1 (Buchner-Kucharz, [Bu-Ku]). Let $F : U \times \mathbb{R} \to \mathbb{R}$ be a function strongly admissible by (α, β). Then, given $t_0 \in \mathbb{R}$ and a neighborhood V_0 of t_0 in \mathbb{R}, there exists a neighborhood U_0 of 0 in \mathbb{R}^2 and a continuous map $\sigma : U_0 \times V_0 \to U$ such that, for each $t \in V_0$, σ_t send 0 in 0 and transform homeomorphically U_0 in $\sigma_t(U_0)$, and $F_t \circ \sigma_t = F_{t_0}$.

Proof: Without loss of generality, we can assume that $t_0 = 0$ and that V_0 is the interval $(-L, L)$ for some real positive number L.

Let $\epsilon > 0$ be such that $\phi : S^1 \times (-\epsilon, \epsilon) \to \mathbb{R}^2$ defined by $\phi(x, r) = (r^{\alpha_1}x_1, r^{\alpha_2}x_2)$ has its values in U.

Define $H : S^1 \times (-\epsilon, \epsilon) \times \mathbb{R} \to \mathbb{R}$ by $H(x, r, t) = r^{-\beta}g(\phi(x, r), t)$ for $r \neq 0$ and $H(x, 0, t) = 0$.

Let $\pi : S^1 \times (-\epsilon, \epsilon) \times \mathbb{R} \to S^1 \times \mathbb{R}$ be the canonical projection $\pi(x, r, t) = (x, t)$.

Claim 1: The conditions (I) and (III) implies that $H \cdot \frac{\partial H}{\partial r}, \frac{\partial H}{\partial t}$ are at least of class C^1, and equal to zero if $r = 0$.

In fact,

- by the Taylor’s infinitesimal formula, we can write $g_t(\phi(x, r))$ in the form $g_t(\phi(x, r)) = T^k g_t(\phi(x, r)) = R_k(\phi(x, r))$ where $\lim_{r \to 0} \frac{R_k(\phi(x, r))}{r^\beta} = 0$. Thus,

$$H(x, r, t) = \frac{T^k g_t(\phi(x, r))}{r^\beta} + \frac{R_k(\phi(x, r))}{r^\beta}$$

Publicado pelo ICIC-USP
Sob a supervisão CPq/ICMC
Observe that, as \(w(T^k(g_t)) > \beta \), then \(\lim_{r \to 0} \frac{R_k(\phi(x,r))}{r^\beta} = 0 \).

Remark: By \((\text{II})\) we have that the map defined by \(R_k(\phi(x,r)) \). Therefore, \(\alpha' \) has the same property where \(\alpha' = \min\{\alpha_1, \alpha_2\} \). Therefore, \(\alpha'k - \beta > 0 \) and we have that \(\lim_{r \to 0} \frac{R_k(\phi(x,r))}{r^\beta} = 0 \).

Thus, we have that \(\lim H(x,r,t) = 0 \), and therefore \(H \) is continuous.

• By the uniqueness of the Taylor’s expansion, we have that

\[
T^{k-1}\left(\frac{\partial g_t}{\partial x_i}\right) = \frac{\partial}{\partial x_i} T^k(g_t)
\]

and

\[
T^{k-2}\left(\frac{\partial^2 g_t}{\partial x_i \partial x_j}\right) = \frac{\partial^2}{\partial x_i \partial x_j} (T^k(g_t)).
\]

Therefore, \(w(T^{k-1}(\frac{\partial g_t}{\partial x_i})) > \beta - \alpha_i \) and \(w(T^{k-2}(\frac{\partial^2 g_t}{\partial x_i \partial x_j})) > \beta - \alpha_i - \alpha_j \). Thus, in the same way as above, we can prove that \(\lim_{r \to 0} \frac{\partial H}{\partial x_i} = 0 \) and \(\lim_{r \to 0} \frac{\partial^2 H}{\partial x_i \partial x_j} = 0 \).

Therefore, \(H \) and \(\frac{\partial H}{\partial x_i} \) are, at least, \(C^1 \).

• It is easy to verify, that again we have \(\frac{\partial H}{\partial t} \) at least of class \(C^1 \). This conclude the claim.

Let

\[
A: S^1 \times (-\epsilon, \epsilon) \times \mathbb{R} \to \mathbb{R}^2
\]

the map \(A(x,r,t) = \nabla_x(f \circ \pi + H) = (\frac{\partial}{\partial x_1}(f \circ \pi + H), \frac{\partial}{\partial x_2}(f \circ \pi + H)) \) and

\[
A^*: S^1 \times (-\epsilon, \epsilon) \times \mathbb{R} \to \mathbb{R}^2
\]

the map defined by \(A^*(x,r,t) = \nabla_x(f \circ \pi) = (\frac{\partial}{\partial x_1}(f \circ \pi), \frac{\partial}{\partial x_2}(f \circ \pi)) \)

Remark: By \((\text{II})\) we have that \(A^*(x,r,t) \) is surjective at each point of \(S^1 \times (-\epsilon, \epsilon) \times \mathbb{R} \) and therefore \(A \) has the same property where \(\epsilon \) is choosen sufficiently small and \(\mathbb{R} \) is changed by \((-L - \delta, L + \delta) \).

Hence, we can write \(\frac{\partial f}{\partial t} \circ \pi + \frac{\partial H}{\partial t} \) as linear combination of the coordinates functions of \(A \) whose coefficients are functions of class \(C^1 \) in \(S^1 \times (-\epsilon, \epsilon) \times (-L - \delta, L + \delta) \). Thus,

\[
\frac{\partial f}{\partial t} \circ \pi + \frac{\partial H}{\partial t} = (\nabla_x(f \circ \pi + H), u)
\]
where \(u(x, r, t) = (u_1(x, r, t), u_2(x, r, t)) \) is a map of class \(C^1 \) in \(S^1 \times (-\epsilon, \epsilon) \times (-L - \delta, L + \delta) \).

Remark: Since \(\nabla_x (f \circ \pi + H) \) is of class \(C^1 \), the implicit function theorem tell us that \(u \) is of class \(C^1 \).

Multiplying the expression (1) by \(r^\beta \) we have that:

\[
\frac{\partial F}{\partial t}(\phi(x, r, t)) = \langle \nabla_y F(y, t), w(\phi^{-1}(y), t) \rangle
\]

with \((x, r, t) \in S^1 \times (-\epsilon, 0) \cup (0, \epsilon) \times (-L - \delta, L + \delta) \) where \(w(x, r, t) = (r^{\alpha_1}u_1(x, r, t), r^{\alpha_2}u_2(x, r, t)) \) is of class \(C^1 \) in \(S^1 \times (-\epsilon, \epsilon) \times (-L - \delta, L + \delta) \).

Now we may write (2) as

\[
\frac{\partial F}{\partial t}(y, t) = \langle \nabla_y F(y, t), w(\phi^{-1}(y), t) \rangle
\]

where \(y \in \phi(S^1 \times (-\epsilon, \epsilon)) \setminus \{0\} \).

Consider the vector field \(W(y, t) = \frac{\partial}{\partial t} - w(\phi^{-1}(y), t) \) defined in \([\phi(S^1 \times (-\epsilon, \epsilon)) \setminus \{0\}] \times \mathbb{R} \) which is of class \(C^1 \).

Claim 2: \(W \perp \nabla F \). In fact, \(\nabla F = (\nabla_x F, \frac{\partial F}{\partial t}) \), therefore

\[
\langle W, \nabla F \rangle = \frac{\partial F}{\partial t} - \langle \nabla_y F, w(\phi^{-1}(y), t) \rangle = 0.
\]

Remark: Give \(y = \phi(x, r) \in \phi(S^1 \times (-\epsilon, \epsilon)) \setminus \{0\} \), then make \(y \to 0 \) is equivalent to make \(r \to 0 \).

Then \(\lim_{y \to 0} W(y, t) = \frac{\partial}{\partial t} - \lim_{r \to 0} w(x, r, t) = \frac{\partial}{\partial t} \), and therefore the vector field \(W \) has a continuous extension to \((0, t) \) with \(W(0, t) = \frac{\partial}{\partial t} \).

Consider now, the initial value problem

\[
\begin{cases}
\frac{\partial \tau}{\partial t}(y, t) = W(\tau(y, t)) \\
\tau(y, 0) = (y, 0)
\end{cases}
\]

Let us suppose that there exists \(\epsilon', \delta' \) and \(\tau \) such that \(0 < \epsilon' \leq \epsilon, 0 < \delta' \leq \delta \) and \(\tau \) is a map of

\[
[\phi(S^1 \times (-\epsilon', \epsilon')) \setminus \{0\}] \times (-L - \delta', L + \delta') \to \phi(S^1 \times (-\epsilon, \epsilon)) \setminus \{0\}
\]

satisfying (4).

Remark: As the vector field \(W \) is constant along of the parameter space, it is easy to see that \(\tau(y, t) = (\tau(y, t), t) \).
Claim 3: \(\frac{\partial}{\partial t}(F(\tau(y,t))) = 0. \) In fact,

\[
\frac{\partial}{\partial t}(F(\tau(y,t))) = (\nabla F(\tau(y,t)), \tau_y(t)) = \langle \nabla F, W \rangle = 0.
\]

Hence, \(F(\tau(y,t)) = c(y) \) is a “constant depending on \(y \).” As \(F(\tau(y,0)) = F(y,0) \), i.e., \(F_t \circ \tau_t = F_0 \)

We know by Theorems of differential equations that there exist a unique solution \(\tau_t : S^1 \times (-\epsilon', \epsilon') \setminus \{0\} \rightarrow S^1 \times (-\epsilon, \epsilon) \setminus \{0\} \) of class \(C^1 \).

Claim 4: Continuing with the construction of \(\tau(y,t) \), we will show that if we define \(\tau_t(0) = 0 \), i.e., \(\tau_t(0,t) = (0,t) \), then \(\tau_t : S^1 \times (-\epsilon', \epsilon') \setminus \{0\} \rightarrow S^1 \times (-\epsilon, \epsilon) \) is a homeomorphism.

In fact, let we consider the lift of the vector field \(\omega_t \circ \phi^{-1} \) to \(S^1 \times \{0\} \cup \{0, \epsilon \} \), i.e., consider the vector field \(V_t : S^1 \times \{0\} \cup \{0, \epsilon\} \rightarrow T(S^1 \times \{0\} \cup \{0, \epsilon\}) \) such that \(d_{(x,t)} \phi.V_t = w_t(x,r) \)

Claim 4.1: \(V_t \) has a \(C^1 \) extension to \(S^1 \times (-\epsilon, \epsilon) \) that is tangent to \(S^1 \times \{0\} \) at all points of \(S^1 \times \{0\} \). In fact, if we identify the tangent bundle if \(S^1 \) as a subbundle of the trivial bundle \(S^1 \times \mathbb{R}^2 \) then the equation of \(V_t \) becomes:

\[
\begin{bmatrix}
 r^\alpha_1 & 0 & \alpha_1 x_1 x_1^\alpha_1 - 1 \\
 0 & r^\alpha_2 & \alpha_2 x_2 x_2^\alpha_2 - 1 \\
 x_1 & x_2 & 0
\end{bmatrix}
\begin{bmatrix}
 V_{1t} \\
 V_{2t} \\
 V_{3t}
\end{bmatrix}
= \begin{bmatrix}
 r^\alpha_1 u_1(x, r, t) \\
 r^\alpha_2 u_2(x, r, t) \\
 0
\end{bmatrix}.
\]

(5)

Remark: The equation of \(V_t \) above, may be deduced by analyzing the action of \(d_{(x,t)} \phi, v, v \in T(S^1 \times (-\epsilon, \epsilon)) \), this is, let \(\gamma(s) = (x(s), r(s)) \) be a curve with \(\gamma'(0) = (x'(0), r'(0)) = v = (v_1, v_2, v_3) \) and \(\gamma(0) = (x, r) \)
\[
\begin{align*}
\therefore \frac{\partial}{\partial s} (\phi \circ \gamma)_{i=0} &= \frac{\partial}{\partial s} (r(s)^{\alpha_1} x_1(s), r(s)^{\alpha_2} x_2(s))_{i=0} = \\
&= (\alpha_1 x_1 r^{\alpha_1-1} v_3 + r^{\alpha_1} v_1, \alpha_2 x_2 r^{\alpha_2-1} v_3 + r^{\alpha_2} v_2) = \\
&= \begin{bmatrix}
 r^{\alpha_1} & 0 & \alpha_1 x_1 r^{\alpha_1-1} \\
 0 & r^{\alpha_2} & \alpha_2 x_2 r^{\alpha_2-1} \\
 x_1 & x_2 & 0
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2 \\
v_3
\end{bmatrix}
\end{align*}
\]

Solving the equation (5), by the Cramer’s rule, we have that
\[
V_{it} = \frac{\Delta}{\Delta}, \quad i = 1, 2, 3
\]
where
\[
\Delta = \begin{vmatrix}
 r^{\alpha_1} & 0 & \alpha_1 x_1 r^{\alpha_1-1} \\
 0 & r^{\alpha_2} & \alpha_2 x_2 r^{\alpha_2-1} \\
 x_1 & x_2 & 0
\end{vmatrix}
\]
and \(\Delta_i\) is the determinant of the matrix obtained by replacing the \(i\)th column by the vector
\[
\begin{bmatrix}
r^{\alpha_1} u_1 \\
r^{\alpha_2} u_2 \\
0
\end{bmatrix}
\]

Looking for the above determinants, is not difficult to see that \(\Delta\) is the product of \(r^{\sum \alpha_i-1}\) and a nonvanish term, \(\Delta_i\) has a factor of \(r^{\sum \alpha_i-1}\) with \(i = 1, 2, 3\), and \(\Delta_3\) has a factor of \(r^{\sum \alpha_i}\). Now we have proved the claim 4.1.

Continuing with the proof of the Claim 4, consider the initial value problem
\[
\begin{cases}
\frac{\partial \eta}{\partial t}(x, r, t) = -V_t(\eta(x, r, t)) \\
\eta(x, r, 0) = (x, r)
\end{cases}
\]

This has a \(C^1\) solution in \(S^1 \times (-\epsilon', \epsilon') \times (-L - \delta', L + \delta')\) where \(0 < \epsilon' \leq \epsilon\) and \(0 < \delta' \leq \delta\). **Claim 4.2**: \(\eta_t\) is a \(C^1\)-embedding of \(S^1 \times (-\epsilon', 0) \to S^1 \times (-\epsilon, \epsilon)\) such that
\[
\eta_t(S^1 \times \{0\}) = S^1 \times \{0\}, \quad \eta_t(S^1 \times (-\epsilon', 0)) \subset S^1 \times (-\epsilon, 0)
\]
and
\[
\eta_t(S^1 \times (0, \epsilon')) \subset S^1 \times (0, \epsilon)
\]

Now we define \(\rho_t\) by \(\rho_t = \phi \circ \eta_t \circ \phi_t^{-1}\) in \(\phi(S^1 \times (0, \epsilon'))\). Then \(\rho_t\) satisfy (4). However \(\rho = (\rho_t, t)\) has a continuous extension to the \(t\)-axis, since
\[
\lim_{(y, t) \to (0, t_0)} \rho_t = 0.
\]
The same occur with \(\rho_t^{-1}\).
REFERENCES