

45. On the strongly damped wave equation, V. Pata and M. Squassina, Communications in Mathematical Physics 253 (3) 511-533 (2005).
47. On the upper semicontinuity of the attractor for perturbed generalized semiflows, Li Ai-cui and Xiao Yue-long, Natural Science Journal of Xiangtan University 27 (2) 16-21 (2005).

61. Non-autonomous wave dynamics with memory - Asymptotic regularity and uniform attractor, Chunyou Sun, Daomin Cao and Jinqiao Duan, Discrete and Continuous Dynamical Systems-Series B 9 (3-4) 743-761 (2008).

71. Dynamics of strongly damped wave equations in locally uniform spaces attractors and asymptotic regularity, Chunyou Sun and Meihua Yang, Transactions of the American Mathematical Society 361 (2) 1069-1101 (2009).

38. Attractors for non-autonomous parabolic problems with singular initial data, Xiaojun Li and Shigui Ruan, J. Differential Equations 251 (3) 728-757 (2011).

37. Attractors for non-autonomous parabolic problems with singular initial data, Xiaojun Li and Shigui Ruan, *J. Differential Equations* **251** (3) 728-757 (2011)

18. Solutions of the perturbed Hasegawa-Mima Equation when the initial value is in H^s ($1 < s < 2$), Jin Zhen, Journal od Donguan University of Technology 14 (1) 1-3 (2007).

28. Attractors for non-autonomous parabolic problems with singular initial data, Xiaojun Li and Shigui Ruan, J. Differential Equations 251 (3) 728-757 (2011)

2. On the strongly damped wave equation, V. Pata and M. Squassina, Communications in Mathematical Physics 253 (3) 511-533 (2005).

15. Dynamics of strongly damped wave equations in locally uniform spaces attractors and asymptotic regularity, Chunyou Sun and Meihua Yang, Transactions of the American Mathematical Society 361 (2) 1069-1101 (2009).

13. Attractors for a non-linear parabolic equation modelling suspension flows, José M. Amigó, Isabelle Catto, Ángel Giménez and José Valero, Discrete and Continuous Dynamical Systems - Series B 11 (2) 205-231 (2009).

17. Asymptotic behavior of a class of non-autonomous degenerate parabolic equations

16. *Continuity of global attractors for a class of non local evolution equations* Pereira A. L., da Silva S.H., Discrete and Continuous Dynamical System, Series A, **26** (3) 1073-1100 MAR 2010

3. On the strongly damped wave equation, V. Pata and M. Squassina, Communications in Mathematical Physics 253 (3) 511-533 (2005).

8. Non-autonomous wave dynamics with memory - Asymptotic regularity and uniform attractor, Chunyou Sun, Daomin Cao and Jinqiao Duan, Discrete and Continuous Dynamical Systems-Series B 9 (3-4) 743-761 (2008).

5. **Pullback exponential attractors** Langa JA, Miranville A, Real J, Discrete and Continuous Dynamical Systems (Series A) **26** (4) 1329-1357 APR 2010

xxxii) **Continuation and asymptotics to semilinear parabolic equations with critical nonlinearities**, Journal of Mathematical Analysis and Applications *310* (2) 557–578 (2005).

1. Structurally damped plate and wave equations with random point force in arbitrary space dimensions, R. Schnaubelt and M. Veraar, Differential and Integral Equations 23 (9-10) 957-988 (2010).

xxxvi) Infinite Dimensional Dynamics Described by Ordinary Differential Equations - Tese de Doutorado

xxxix) Attractors of Infinite Dimensional Non-Autonomous Dynamical Systems, Springer-Verlag - 2011

xl) Strongly damped wave equations in $W^{1,p}_0(\Omega) \times L^p(\Omega)$, Discrete and Continuous Dynamical Systems A, 230-239, Supplement 2007.

1. Extremal equilibria for monotone semigroups in ordered spaces with application to evolutionary equations, Jan W. Cholewa and Aníbal Rodríguez-Bernal, J. Differential Equations 249 (3) 485-525 (2010)

xlvi) **Strongly damped wave equations with critical nonlinearities I Case $\theta = 1/2$**, Notas do ICMC-USP, Série Matemática, São Carlos (1999).

lii) An extension of the concept of gradient semigroups which is stable under perturbation, J. Differential Equations 246 (2009), pp. 26462668.

