# Aplicações

Marina Andretta

ICMC-USP

19 de outubro de 2010

Marina Andretta (ICMC-USP)

sme0212 - Otimização não-linear

19 de outubro de 2010 1 / 50

э

# Problema de estimativa de parâmetros em um problema de óptica

- Um filme fino é uma fina camada de material de espessura normalmente inferior a um mícron. Este é depositado sobre um substrato transparente, de espessura muito maior.
- Como medir a espessura de filmes finos é um processo caro, estamos interessados em estimar a espessura e algumas constantes ópticas (índice de refração e coeficiente de absorção) de um filme.

Já que filmes finos são utilizados na produção de semicondutores, revestimentos de diversos materiais, biotecnologia e na geração e conservação de energia (painéis solares), é grande a importância da resolução deste problema.

A idéia é utilizar alguns dados facilmente medidos e o comportamento físico teórico conhecido do sistema e modelar o problema de estimar a espessura e as constantes ópticas como um problema de programação não-linear.

A transmitância T de um filme fino absorvente depositado sobre um substrato grosso transparente é dada por

$$T = \frac{Ax}{B - Cx + Dx^2},$$

onde

],

# Comportamento físico teórico

• 
$$C = [(n^2 - 1 + \kappa^2)(n^2 - s^2 + \kappa^2) - 2\kappa^2(s^2 + 1)]2\cos\varphi - \kappa[2(n^2 - s^2 + \kappa^2) + (s^2 + 1)(n^2 - 1 + \kappa^2)]2\operatorname{sen}\varphi$$
,

• 
$$D = [(n-1)^2 + \kappa^2][(n-1)(n-s^2) + \kappa^2],$$

- $\varphi = 4\pi nd/\lambda$ ,
- $x = \exp(-\alpha d)$ ,
- $\alpha = 4\pi\kappa/\lambda$ .

э

Nestas expressões:

- $\lambda$  é o comprimento de onda,
- $s = s(\lambda)$  é o índice de refração do substrato transparente (considerado conhecido),
- $n = n(\lambda)$  é o índice de refração do filme,
- $\kappa = \kappa(\lambda)$  é o coeficiente de atenuação do filme,
- $\alpha = \alpha(\lambda)$  é o coeficiente de absorção do filme e
- *d* é a espessura do filme.

Um conjunto de dados experimentais

$$(\lambda_i, T^{obs}(\lambda_i)), \ \lambda_{\min} \leq \lambda_i < \lambda_{i+1} \leq \lambda_{\max}, \ i = 1, \dots, N,$$

é dado e queremos estimar d,  $n(\lambda)$  e  $\kappa(\lambda)$ .

Este problema é altamente indeterminado.

Mesmo com d conhecido, queremos que valha

$$T[\lambda_i, s(\lambda_i), d, n(\lambda_i), \kappa(\lambda_i)] = T^{obs}(\lambda_i), i = 1, \dots, N.$$

Ou seja, temos uma única equação para cada duas incógnitas  $(n(\lambda_i) \in \kappa(\lambda_i))$ .

O conjunto de pontos que satisfazem esta equação, para um dado d, é infinito.

No entanto, algumas restrições físicas conhecidas reduzem o espaço de possíveis soluções.

Na vizinhança do pico de absorção fundamental, essas restrições são:

R1.  $n(\lambda) \ge 1 \in \kappa(\lambda) \ge 0$  para todo  $\lambda \in [\lambda_{\min}, \lambda_{\max}];$ 

R2.  $n(\lambda) \in \kappa(\lambda)$  são funções decrescentes em  $\lambda$ ;

R3.  $n(\lambda)$  é convexa;

R4. existe  $\lambda_{infl} \in [\lambda_{min}, \lambda_{max}]$  tal que  $\kappa(\lambda)$  é convexa se  $\lambda \ge \lambda_{infl}$  e côncava se  $\lambda \le \lambda_{infl}$ .

Utilizando os comprimentos de onda  $\lambda_i$ , i = 1, ..., N, equidistantes no intervalo  $[\lambda_{\min}, \lambda_{\max}]$ , obtemos uma discretização das funções acima.

Note que

$$\lambda_i = \lambda_{\min} + (i-1) rac{\lambda_{\max} - \lambda_{\min}}{N-1}.$$

Denotaremos por 
$$n_i = n(\lambda_i)$$
,  $\kappa_i = \kappa(\lambda_i)$ ,  $s_i = s(\lambda_i)$  e  $T_i^{obs} = T^{obs}(\lambda_i)$ .

A restrição R2 pode ser escrita como

$$n_{i+1}\leq n_i,\ i=1,\ldots,N-1,$$

$$\kappa_{i+1} \leq \kappa_i, \ i=1,\ldots,N-1.$$

Marina Andretta (ICMC-USP)

A restrição R3 pode ser escrita como  $n''(\lambda) \ge 0$ , ou

$$n_i \leq n_{i-1} + \frac{n_{i+1} - n_{i-1}}{\lambda_{i+1} - \lambda_{i-1}} (\lambda_i - \lambda_{i-1}), \Rightarrow$$

$$n_i \leq \frac{1}{2}(n_{i+1}+n_{i-1}), \ i=2,\ldots,N-1.$$

Marina Andretta (ICMC-USP)

19 de outubro de 2010 12 / 50

# Modelo matemático

A restrição R4 pode ser escrita como  $\kappa''(\lambda) \ge 0$ , para  $\lambda \ge \lambda_{infl}$  e  $\kappa''(\lambda) \le 0$ , para  $\lambda \le \lambda_{infl}$ , ou seja,

$$\kappa_i \ge \kappa_{i-1} + \frac{\kappa_{i+1} - \kappa_{i-1}}{\lambda_{i+1} - \lambda_{i-1}} (\lambda_i - \lambda_{i-1}) \Rightarrow$$

$$\kappa_i \geq \frac{1}{2}(\kappa_{i+1} + \kappa_{i-1}), \ \lambda_{i+1} \leq \lambda_{\text{infl}},$$

$$\kappa_i \leq \kappa_{i-1} + \frac{\kappa_{i+1} - \kappa_{i-1}}{\lambda_{i+1} - \lambda_{i-1}} (\lambda_i - \lambda_{i-1}) \Rightarrow$$

$$\kappa_i \leq \frac{1}{2}(\kappa_{i+1} + \kappa_{i-1}), \ \lambda_{i-1} \geq \lambda_{\text{infl}}.$$

Marina Andretta (ICMC-USP)

Para calcular os valores de d,  $n(\lambda) \in \kappa(\lambda)$ , resolvemos o seguinte problema de programação não-linear:

| Minimizar | $\sum_{i=1}^{N} [T_i^{\text{obs}} - T(\lambda_i, s_i, d, n_i, \kappa_i)]^2$ |                                             |
|-----------|-----------------------------------------------------------------------------|---------------------------------------------|
| sujeita a | $n_{i+1} \leq n_i,$                                                         | $i=1,\ldots,N-1,$                           |
|           | $\kappa_{i+1} \leq \kappa_i,$                                               | $i=1,\ldots,N-1,$                           |
|           | $n_i \leq \frac{1}{2}(n_{i+1}+n_{i-1}),$                                    | $i=2,\ldots,N-1,$                           |
|           | $\kappa_i \geq \frac{1}{2}(\kappa_{i+1} + \kappa_{i-1}),$                   | $\lambda_{i+1} \leq \lambda_{\text{infl}},$ |
|           | $\kappa_i \leq \frac{1}{2}(\kappa_{i+1} + \kappa_{i-1}),$                   | $\lambda_{i-1} \ge \lambda_{\text{infl}},$  |
|           | $n_i \ge 1,$                                                                | $i=1,\ldots,N,$                             |
|           | $\kappa_i \geq 0,$                                                          | $i=1,\ldots,N.$                             |

(1)

Note que, fixado *d*, temos 2*N* variáveis ( $n_i \in \kappa_i$ , para i = 1, ..., N) e 4N - 6 restrições lineares.

Por saber que, na região de interesse, a função  $\kappa$  é convexa, fixamos  $\lambda_{infl}$  em  $\lambda_{min}$ .

Dados *N*,  $\lambda_{\min}$ ,  $\lambda_{\max}$  e as observações  $T_i^{obs}$ ,  $i = 1, \ldots, N$ , fixamos o valor de *d*. Utilizando uma estimativa inicial para *n* e  $\kappa$ , podemos usar um método para minimização com restrições lineares para resolver a instância do problema (1).

# Algoritmo para resolução do problema

Utilizamos seis estimativas iniciais de n.

Todas elas são funções lineares decrescentes, que vão do ponto  $(x_1, y_1)$  ao ponto  $(x_2, y_2)$ , sendo os pares  $[(x_1, y_1); (x_2, y_2)]$  os seguintes:

- $[(\lambda_{\min}, 3); (\lambda_{\max}, 2)],$
- $[(\lambda_{\min}, 4); (\lambda_{\max}, 2)],$
- $[(\lambda_{\min}, 5); (\lambda_{\max}, 2)],$
- $[(\lambda_{\min}, 4); (\lambda_{\max}, 3)],$
- $[(\lambda_{\min}, 5); (\lambda_{\max}, 3)],$
- $[(\lambda_{\min}, 5); (\lambda_{\max}, 4)].$

Para as estimativas iniciais de  $\kappa$ , utilizamos a função linear por partes que vale 0.1 em  $\lambda_{\min}$ , 0.01 em  $\lambda_{\min} + 0.2(\lambda_{\max} - \lambda_{\min})$ , e  $10^{-10}$  em  $\lambda_{\max}$ .

Dado um intervalo  $[d_{\min}, d_{\max}]$  no qual sabe-se estar a espessura verdadeira, utilizamos como estimativa para espessura do filme os valores no intervalo  $[d_{\min}, d_{\max}]$ , espaçados de 10 em 10. Ou seja,  $d_{\min}, d_{\min} + 10, \dots, d_{\max}$ .

Para resolver o problema (1), utilizamos cada combinação das estimativas de n,  $\kappa \in d$  citadas acima e utilizamos GENLIN para resolver as instâncias do problema.

Dentre todas as combinações usadas, ficamos com a solução  $\bar{n} \in \bar{\kappa}$  que fornece menor valor da função objetivo.

Chamemos  $\overline{d}$  o valor de d utilizado na obtenção desta solução.

Definimos então o intervalo  $[\bar{d} - 10, \bar{d} + 10]$ . Fixamos *d* como os pontos deste intervalo espaçados um a um,  $\bar{n} \in \bar{\kappa}$  como ponto inicial e resolvemos estas instâncias do problema (1) utilizando GENLIN.

Dentre as soluções obtidas para cada instância, consideramos como solução do problema (1) original a espessura  $d^*$  e a solução  $n^*$  e  $\kappa^*$  que fornecem o menor valor de função objetivo.

Para verificar se este método de resolução do problema (1) é confiável, utilizamos transmitância gerada por computador de filmes *gedanken*, para os quais temos os resultados verdadeiros para comparar com a solução fornecida pelo método.

Os conjuntos de filme e substrato utilizados nos experimentos são:

• Filme A: este filme gerado por computador simula um filme fino de Silício amorfo hidrogenado (*a-Si:H*), depositado sobre um substrato de vidro, com espessura d<sup>real</sup> = 100 nm. O intervalo de comprimentos de onda usado vai de 550 nm a 1530 nm;

- Filme B: este filme, como o Filme A, simula um filme fino de Silício amorfo hidrogenado (*a-Si:H*) depositado sobre um substrato de vidro. Sua espessura é d<sup>real</sup> = 600 nm e o intervalo de comprimentos de onda usado vai de 620 nm a 1610 nm;
- Filme C: simula um filme fino de Germânio amorfo hidrogenado (*a-Ge:H*), depositado sobre um substrato cristalino de Silício, com espessura d<sup>real</sup> = 100 nm e intervalo de comprimentos de onda de 1250 nm a 2537 nm;

- Filme D: este filme, como o Filme C, simula um filme fino de Germânio amorfo hidrogenado (*a-Ge:H*), depositado sobre um substrato cristalino de Silício. Sua espessura é d<sup>real</sup> = 600 nm e o intervalo de comprimentos de onda vai de 1250 nm a 2537 nm;
- Filme E: simula um filme de óxido de metal, com espessura d<sup>real</sup> = 80, depositado sobre vidro. O intervalo de comprimentos de onda usado vai de 360 nm a 657 nm.

O índice de refração  $s(\lambda)$  dos substratos de vidro e Silício usados nos experimentos são dados, respectivamente, por

$$s_{ ext{vidro}}(\lambda) = \sqrt{1 + rac{1}{\left(0.7568 - rac{7930}{\lambda^2}
ight)}},$$

$$\begin{split} s_{\text{Si}}(\lambda) = & 3.71382 - 8.69123 \times 10^{-5} \lambda \\ & -2.47125 \times 10^{-8} \lambda^2 + 1.04677 \times 10^{-11} \lambda^3. \end{split}$$

O índice de refração  $n^{\text{real}}$  e o coeficiente de absorção  $\alpha^{\text{real}}$  de *a-Si:H* são dados por

$$\mathit{n^{\mathsf{real}}}(\lambda) = \sqrt{1 + rac{1}{\left(0.09195 - rac{12600}{\lambda^2}
ight)}},$$

 $\ln(\alpha^{\text{real}}(E)) = \begin{cases} 6.5944 \times 10^{-6} e^{(9.0846E)} - 16.102, & 0.60 < E < 1.40, \\ 20E - 41.9, & 1.40 < E < 1.75, \\ \sqrt{59.56E - 102.1} - 8.391, & 1.75 < E < 2.29. \end{cases}$ 

O índice de refração  $n^{\text{real}}$  e o coeficiente de absorção  $\alpha^{\text{real}}$  de *a-Ge:H* são dados por

$$n^{\mathsf{real}}(\lambda) = \sqrt{1 + rac{1}{\left(0.065 - rac{15000}{\lambda^2}
ight)}},$$

$$\ln(\alpha^{\text{real}}(E)) = \begin{cases} 6.5944 \times 10^{-6} e^{(13.629E)} - 16.102, & 0.48 < E < 0.93, \\ 30E - 41.9, & 0.93 < E < 1.17, \\ \sqrt{89.34E - 102.1} - 8.391, & 1.17 < E < 1.50. \end{cases}$$

25 / 50

O índice de refração  $n^{\rm real}$  e o coeficiente de absorção  $\alpha^{\rm real}$  do óxido de metal são dados por

$$n^{\mathsf{real}}(\lambda) = \sqrt{1 + rac{1}{\left(0.3 - rac{10000}{\lambda^2}
ight)}},$$

 $\ln(\alpha^{\text{real}}(E)) = 6.5944 \times 10^{-6} e^{(4.0846E)} - 11.02, \quad 0.5 < E < 3.5.$ 

26 / 50

Nas expressões anteriores, o comprimento de onda  $\lambda$  é dado em nanômetros (nm), a energia do fóton  $E = 1240/\lambda$  é dada em eV e o coeficiente de absorção  $\alpha$  é dado em nm<sup>-1</sup>.

Note que  $\kappa$  pode ser obtido a partir de  $\alpha$ .

Para todos os experimentos, usamos N = 100. Os valores de  $\lambda_i$  utilizados são os 100 pontos do intervalo fechado  $[\lambda_{\min}, \lambda_{\max}]$  igualmente espaçados.

Para cada conjunto de filme e substrato descrito, calculamos os valores verdadeiros  $s^{\text{real}}$ ,  $n^{\text{real}}$  e  $\kappa^{\text{real}}$  utilizando cada um desses  $\lambda_i$ .

A partir destes valores, calculamos a transmitância verdadeira dos filmes  $\mathcal{T}^{\text{real}}$ .

Precisamos de um intervalo inicial para a espessura d. Utilizamos  $d^{\min} = 0.5d^{\text{real}}$  e  $d^{\max} = 1.5d^{\text{real}}$ .

| Instância | Esp verdadeira | Espessura | Erro quadrático | Tempo   |
|-----------|----------------|-----------|-----------------|---------|
| Filme A   | 100            | 100       | 5.25E-07        | 250.68  |
| Filme B   | 600            | 600       | 1.93E-07        | 1635.60 |
| Filme C   | 100            | 105       | 1.15E-07        | 119.46  |
| Filme D   | 600            | 600       | 1.69E-07        | 841.28  |
| Filme E   | 80             | 80        | 1.26E-07        | 239.99  |

Tabela: Espessuras (em nanômetros) verdadeiras e recuperadas, erro quadrático e tempo (em segundos) gasto por GENLIN para resolver as instâncias Filme A a Filme E.

Os valores de espessura recuperados por GENLIN estão muito próximos dos valores reais.

Com relação às constantes ópticas recuperadas, apenas no caso do Filme C (Figura 11), o método obteve uma aproximação ruim para o coeficiente de absorção. Isso é esperado, dado o alto grau de indeterminação do modelo para este filme.



Figura: Valores reais e recuperados por GENLIN para a transmitância do Filme A.



Figura: Valores reais e recuperados por GENLIN para o índice de reflexão do Filme A.



Figura: Valores reais e recuperados por GENLIN para o coeficiente de absorção do Filme A.



Figura: Erro quadrático obtido por GENLIN durante o processo de otimização em relação aos valores testados para espessura do Filme A.



Figura: Valores reais e recuperados por GENLIN para a transmitância do Filme B.



Figura: Valores reais e recuperados por GENLIN para o índice de reflexão do Filme B.



Figura: Valores reais e recuperados por GENLIN para o coeficiente de absorção do Filme B.



Figura: Erro quadrático obtido por GENLIN durante o processo de otimização em relação aos valores testados para espessura do Filme B.



Figura: Valores reais e recuperados por GENLIN para a transmitância do Filme C.



Figura: Valores reais e recuperados por GENLIN para o índice de reflexão do Filme C.



Figura: Valores reais e recuperados por GENLIN para o coeficiente de absorção do Filme C.



Figura: Erro quadrático obtido por GENLIN durante o processo de otimização em relação aos valores testados para espessura do Filme C.



Figura: Valores reais e recuperados por GENLIN para a transmitância do Filme D.



Figura: Valores reais e recuperados por GENLIN para o índice de reflexão do Filme D.



Figura: Valores reais e recuperados por GENLIN para o coeficiente de absorção do Filme D.



Figura: Erro quadrático obtido por GENLIN durante o processo de otimização em relação aos valores testados para espessura do Filme D.



Figura: Valores reais e recuperados por GENLIN para a transmitância do Filme E.



Figura: Valores reais e recuperados por GENLIN para o índice de reflexão do Filme E.



Figura: Valores reais e recuperados por GENLIN para o coeficiente de absorção do Filme E.



Figura: Erro quadrático obtido por GENLIN durante o processo de otimização em relação aos valores testados para espessura do Filme E.