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Abstract

We consider the linear integral equations of Fredholm and Volterra

b
x(t)—/a1 a(t,s)x(s)dg(s) = f (t), te[ab],

and .
xt)- [a(tox(e)dgs) = (1), telab,

in the frame of the Henstock-Kurzweil integral and we prove results on the existence
and uniqueness of solutions. More precisely, we consider the above equations in the
sense of Henstock-Kurzweil and we state a Fredholm Alternative theorem for the first
equation and an existence and uniqueness result for the second equation for which the
solution is given explicitly.
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1. Introduction

The aim of this paper is mainly to disseminate C. 8nlg’s results and ideas on the theory

of linear integral equations and the theory of Henstock-Kurzweil non-absolute integration.
Because many of &hig’s works are not easily available for the public, we collect facts and
proofs of the theory developed by him so that the presentation of them in the present paper
is as self-contained as possible. In addition, we add some new results which generalize
Honig’s ideas.
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We consider the following Fredholm and Volterra linear integral equations

b
x(t)—/al a(t,s)x(s)dg(s) = f (t), telab], 1)

and .
x(t)—/ a(t,s)x(9)dgs) = f(t), telab], @
a
in the frame of the Henstock-Kurzweil integral and prove a Fredholm Alternative theorem
for (1) (see Theorem 5.2) and an existence and uniqueness theorem for (2) for which the
solution is given explicitly (see Theorem 6.1).
Letg: [a,b] — R be an element of a certain subspace of the space of continuous func-
tions from([a, b] to R. LetKy([a,b],R) denote the space of all functiorfis [a,b] — R such
that the integray’;’ f(s)dg(s) exists in the sense of Henstock-Kurzweil (see [9], [10] and
[15]). It is known that even wheg(s) = s, an element oKy([a,b],R) can not only have
many points of discontinuities, but it can also be of unbounded variation. Indeed, the space
of Henstock-Kurzweil integrals encompasses Riemann, Lebesgue and Newton’s integrals.
In the present paper, we prove a Fredholm Alternative theorem for equation (1), that is,
we prove that

« either equation (1) has a unique solutione Kqy([a,b],R) and (1) has a resolvent
with similar integral representation,

» or the corresponding homogeneous equation admits non-trivial solutions in
Kg([a,b],R) (see Theorem 5.2 in the sequell).

For equation (2) we prove that

« for every f € Ky([a,b],R), equation (2) admits a unique solutian € Ky([a,b],R)
and the resolvent of (2) is given by Neumann series (Theorem 6.1).

Although the above results are proved in the case whiexeand f are real-valued, the
auxiliary theory developed throughout this paper is presented in a general abstract space
context.

The main obstacle encountered in obtaining the above results is the fact that the normed
space of Henstock-Kurzweil integrable functions is not complete (it is ultrabornological
however - see [8]). Therefore one can not apply usual fixed point theorems in order to
obtain existence results. Such difficulty was faced by the authors in [3] andhigtih
[11] when existence and uniqueness results were proved for the non-Stieltjes-type integral
equations

b
X(t) —/ a(t,s)x(s)ds=f (t), te]ab|,
a
and .
X(t) —/ a(t,9x(s)ds=f(t), telab,
a
in a general Henstock-Kurzweil integral setting.
The obstacle mentioned above can be overcome if some ideas doeitpafe applied

([11]). See [3] and [5], for instance. In the present paper, we adapt such ideas to the Stieltjes
case. The crucial point is
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* to obtain representation theorems which, together with integration by parts and sub-
stitution formulas, will enable us to transform integral equations in the Henstock-
Kurzweil sense into integral equations with respect to the usual Riemann-Stieltjes
integral.

Then we apply the Fredholm Alternative for the Riemann-Stietjes integral (proved in [3],
Theorems 2.4 and 2.5) and a result on the existence and uniqueness of a solution of a
Volterra-Stieltjes integral equation (proved in [12], Theorems 3.8 and 3.4) in order to ob-
tain results on the existence and unigueness of solutions of these Stieltjes-type integral
equations. As a consequence, we obtain a Fredholm Alternative for equation (1), which
is presented in Section 5. We also get an existence and uniqueness result for equation (2),
which is presented in Section 6. The other sections are organized as follows. Section 2 is de-
voted to the fundamental theory of the Riemann-Stieltjes integral in Banach spaces, where
we present basic results, representation theorems and the Fredholm Alternative. In Section
3, we give some basic definitions of the Henstock-Kurzweil integration theory. In Section
4, we present auxiliary results for the Henstock-Kurzweil integral such as the fundamental
theorem of calculus and a substitution formula.

2. The Riemann-Stieltjes integral in Banach spaces

2.1. Functions of BoundedB-variation, of Bounded Semi-variation and of
Bounded Variation

A bilinear triple (we write BT) is a set of three vector spacésF andG, whereF andG
are normed spaces with a bilinear mapp#gE x F — G. Forx € E andy € F, we write
Xy = B(x,y) and we denote thBT by (E,F,G); or simply by(E,F,G). A topological BT

is aBT (E,F,G) whereE is also a normed space amtlis continuous. We suppose that
18] < 1.

If E andF are normed spaces, then we denot& b, F ) the space of all linear contin-
uous functions fronft to F. We writeE’ =L (E,R) andL (E) =L (E,E), whereR denotes
the real line.

Throughout this papek, Y andZ will always denote Banach spaces.

Example 2.1. As an example of a BT we can considerH (X,Y), F = L(Z,X),
L(Z,Y)andB(v,u) =vou. In particular, when Z=R, we have E=L (X,Y),F =X, G
and B (u,x) = u(x); when X=R, we have E=Y, F=Y', G=R and B(y,y) = (y,Y
when X=Z=R,wehave EEG=Y,F=RandB(y,A) = Ay.

G=
=Y
);

Given aBT (E,F,G)g, for everyx € E, we define

1X[|3 = sup{l| B, y)I; Iyl < 1}

and
Egz = {X€E;||X|| < o}.

When we endovwEg with the norm|| - |
associated to thBT (E,F,G).

3, we say that the topologic8T (Ez,F,G) is
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Let E be a vector space afig be a set of seminorms definedBrsuch thaps, ..., pm e
e implies
Squlu teey pm] € rE'

Thenl g defines a topology ok and the sets
Vpe={X€E; p(x) <&}, pelg, £€>0,

form a basis of neighborhoods of 0. The sejs-V,¢ form a basis of the neighborhood
of Xp € E. Moreover, when endowed with this topolodyijs called a locally convex space
(see [13], p. 3, 4).

Example 2.2. Every normed or seminormed space E is a locally convex space.

For other examples, the reader may want to consult [5].

Let [a,b] be a compact interval dR. Any finite set of closed non-overlapping subin-
tervalsiti_s,tj] of [a,b] such that the union of all intervalg_1,t;] equals[a,b] is called a
divisionof [a,b]. In this case we writél = (tj) € Di51,), whereD(, 1, denotes the set of all
divisions of [a,b]. By |d| we mean the number of subintervals in whiehb] is divided
through a giverd € Djg .

Given aBT (E,F,G) and a functioru : [a,b] — E, for every divisiond = (tj) € Dja
we define

d|

SBi(a) = SBapj (@) = Sup{ Zl o (t) —ar(ti-a)]yi

;yi € F, |vill §1}

and
SB(a) =SBy (a) = sup{SBy(a); d € Djap } -
Then SB(a) is the B-variation of a on [a, b]. We say that is a function ofbounded

‘B-variationwhenevelSB(a) < . When this is the case, we writec SB([a,b] ,E).
The following properties are not difficult to prove:

(SB1) SB([a,b],E) is a vector space and the mappimg SB([a,b],E) — SB(a) e R, is
a seminorm;

(SB2) Givena € SB([a,b],E), the functiont € [a,b] — SBgy (a) € R, is monotonically
increasing;

(SB3) Givena € SB([a,b],E) andc € |a,b[, SBap () < SBgq (a) +SBcp ()

Consider thaT (L (X,Y),X,Y). In this case we replac®B([a,b],L (X,Y)) andSB(a)
by SV([a,b],L(X,Y)) andSV(a) respectively. Any element &V ([a,b],L (X,Y)) is called
a function ofbounded semi-variation

Given a functioro : [a,b] — E, E a normed space, amt= (tj) € Djy ), we define

|d|

Vi (a) = Vg [ ) (O ZLHO‘ a (ti_1)|



A Fredholm-Type Theorem for Linear Integral Equations of Stieltjes Type 29

and thevariation of a is given by

V (a) =Vjap (@) =sup{Vg (a);d € Dpay } -

If V(f) < o, thena is called a function obounded variation In this case, we write
a € BV([a,b],E). We also have

BV ([a,b],L(E,F)) C SV([a,b],L(E,F))
and
SV([a,b],L(E,R)) =BV ([a, b],E’) .

Remark 2.1. Consider a BTE,F,G). The definition of variation of a functiom: [a,b] —
E, where E is a normed space, can also be considered as a particular case of the B-
variarion of a in two different ways.

* LetE=F',G=Ror G=C and BX,x) = (x,X). By the definition of the norm in
E =F’, we have

d|

Va(a) = ZHG o (tia)

|d|
= sup

o6, 0 (t) —a(ti-a)|;

l; | 1 1

Thus when we consider the BY',Y,R), we write BV(a) and BV([a,b],Y’) instead
of SB(a) and SH|a,b],Y’) respectively.

X € F, [ < 1} = SBy(a).

 LetF=E’,G=R or G=C and Bx,X) = (x,X). By the Hahn-Banach Theorem,
we have

o (t) — o (ti—1)|| = sup{ | {a () — o (ti—1) , %) | X

and hence

Xl < 13

|d|

Va(a) = ZlHO( ti) —a(ti—1)]|

|d|
= sup

;(0‘ (t) —G(ti1)7></i>| X € B I < 1} = SBy(a).

Givenc € [a,b], we define the spaces
BVC([avb] 7X) = {f € BV([aab] 7X)’ f (C) - O}

and
S\ ([a,b],L(X,Y)) ={a € SV([a,b],L(X,Y)); a(c)=0}.

Such spaces are complete when endowed, respectively, with the norm given by the variation
V (f) and the norm given by the semi-variati6N'(a). See [17], for instance.
The following properties are not difficult to prove:
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(V1) Every functiona € BV ([a,b],E) is bounded andla(t)|| < |la(a)[| +Vjay(a).
(V2) Givena € BV ([a,b],E) andc € ]a,b[, we haveVjap () = Vjaq (0) +Vcp (01).

The next results are borrowed from [14]. We include the proofs here, since this refer-
ence is not easily available. Lemmas 2.1 and 2.2 below are respectively Theorems 1.2.7 and
1.2.8 from [14].

Lemma 2.1. Leta € BV([a,b], X). Then

(i) Forallt €]a,b], there existsi(t )—|I£n a(t—e).
(i) Forallt € [a,b], there existsi(t4) = Ii[g a(t+e).
€

Proof. We will prove (i). The proof of (ii) follows analogously.
Consider a strictly increasing sequertg in [a,t[ converging td. Then

ZIHG t| tl 1 || <V[at]( )’ forall n.

Hence

ZLHO‘ ti) —a(ti-1)[| < Vag(a).

Then{a(t,)} is a Cauchy sequence, since

[[a(tm) — o (tn) || < Z la(t) —alti-1)[| <e,
i=n+1

for sufficiently largem,n. The limita(t—) of {a(ty)} is independent of the choice §f,}
and we finish the proof. O

Lemma 2.2. Leta € BV([a,b],X). For every te [a,b], let (t) = Vjay(a). Then
() v(t+) —v(t) = [la(t+) —a(t)], t < [ab].

(i) v(t) —v(t—) = [la(t) —a(t-)[, te]a b,

Proof. By property (SB2)y is monotonically increasing and heneg+) andv(t—) exist.
By Lemma 2.10(t+) anda(t—) also exist. We will prove (i). The proof of (ii) follows
analogously.
Supposes > t. Then property (V2) implie¥ ;g () = Vigq (0) + Vg (a). Therefore
lo(8) — a(t)]] < Vieg (@) = Viag (@) — Viag(a) and hencglar(t+) —a(t)]| < v(t+) — v(t).
Conversely, giverl € Dy,y), letvgy(t) = Va(a). Then for evere > 0, there exist$ > 0
such thav(t 4+ o) —v(t+) < eand|la(t+0) —a(t+)|| < eand there existd :a=ty <t; <
.. <th=t <tpr1 =t+0osuchthaw(t + o) — vy4(t+ o) < e whenever 0< ¢ < 8. Then

Vit+0)—Vv(t) < wt+o)+e—v(t)=]a(t+o)—a(t)|+e
< la(t+) —a(t)|| +2¢

and hence/(t+) — v(t) < |la(t+) —a(t)||. This completes the proof. O
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Leta € BV([a,b],X). Since|a(t)|| < [[a(a)|| +Vjay, then Lemma 2.2 implies that the
sets

{te[ab[;

a(t+) —a(t)]| > €} and {te]abj;

at) —a(t—)| > e}

are finite for eveng > 0. Thus we have the next result which can be found in [14] (Propo-
sition 1.2.10 there).

Proposition 2.1. Leta € BV([a, b], X). Then the set of points of discontinuityoois count-
able (and all discontinuities are of the first kind).

Let us define
BV, ([a,b],X) = {a € BV4([a, b], X); a(t+) = a(t),t € |Ja,b[}.

A proof thatBV;" ([a, b], X) with the variation norm is complete can be found in [14], The-
orem 1.2.11. We reproduce it next.

Theorem 2.1. BV, ([a, b], X) is a Banach space when endowed with the variation norm.
Proof. For everyt €]a,b[, we have|a(t)|| < |a(a)||+V(a) =V (a). Hence the mappings
Ti:a € BVa([a,b], X) — a(t) € X

and
Ti r 0 € BVy([a,b],X) — a(t+) € X

are continuous. TherefoV;"([a,b],X) is a closed subspace BW;([a,b], X), since it is
given by the continuous mappin@sandT;,, t €]a,b[, and the result follows from the fact
thatBV,([a, b], X) is a Banach space with the variation norm. O

Givenu € L(X,Z') andz € Z, we denote an element ¥f by zo u which is given by
(zou,x) = (z,u(x)), xe X.

We havef(zo u,x)| = [(z u(x))| < ||| [uC)|| < lIz]l [[ul} I]]-
We denote byr* € L(Y’,X") the adjoint or transposed operatonof L(X,Y) which is

defined by
(x,u*(Y))=(ux),y), xeX,yev.

Then
you=u(y), yeY

since(y ou) (x) = (Y,u(x)) = (u*(y'),x) for everyx € X.
Next we present [14], Proposition 1.3.5 and the corollary that follows it.

Proposition 2.2. Given a functioro : [a,b] — L(X,Z’). Then
(i) SV(a) =sup{V(zoa);ze Z, ||Z|| < 1};
(i) o€ SV([a,b],L(X,Z))if and only if zoa € BV([a,b],X’), for every z= Z.
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Proof. In order to prove (i), it is enough to observe thatl i (tj) € D(g), then

|d|

S\(a) = SUIO{ Z[G(ti)—ﬂ(tifl)]xi %€ X, X < 1}
|d|
= Sup{ sup Zi<2, [o(t) —ati-1)]x) |5 % € X, [x]| < 1}
2I<1|i=

|d|

= sup sup{zlm,zmx(ti) —zoa(ti—1)); x € X, [|x]| < 1}

l2I<1

— sup{Vg(zoa)ize Z, 2] < 1}.

Now we will prove (ii). By (i), if a € SV([a,b],L(X,Z’)), thenzoa € BV([a,b],X’),
ze< Z. The converse follows by the uniform boundedness principle. Indeed. Let us define
D = {(d,x); d € Dpap), X= (X1,-..,Xgq|), X € X, ||| <1}. Then for eacd,x) € D, we
defineRq, € Z' by

d|

Fa.2(2) = _Zl<2’ [a(t) —a(ti—1)x),  zeZ

Then the se{Fy ;; (d,z) € D} C Z' is simply bounded o, since|Fy,(z)| < Vy(zoa) <
V(zoa), for all (d,z) € D, and allz € Z. Therefore by uniform boundedness principle,
there existaM > 0 such that|Fy x| < M, (d,z) € D, that is for all(d,z) € D, we have
sup{|Faz(2)]; z€ Z, ||Z]| <1} <M. HenceSV(a) < M. O

Corollary 2.1. Suppose € SV([a,b],L(X,Z')). Then

(i) Foreveryte]a,b], there exist®i(t—) € L(X,Z’) in the sense that

lim (zoa)(t—€) =zoa(t—), ze Z,
e—0,

(i) Foreveryte [a,b], there exist®((t+) € L(X,Z’) in the sense that

lim (zoa)(t+€) = zoa(t+), ze Z

e—0,

Proof. We will prove (i). The proof of (ii) follows analogously.
We may suppose, without loss of generality, thad) = 0. By Lemma 2.1 (i) and
Proposition 2.2 (ii), giverz € Z, there exists

T,= lim (zoa)(t—¢) e X'.

e—0,

Then the mapping :z€ Z+— T, € X’ is linear. It is also continuous, sindigo a(t
[zoa(a)| +Vjay(zoa). Besides, Proposition 2.2 (i) impligigzo ) (t —¢€)[| <V(zo
||z||SV(a). Hence||T|| < SV(a).

)| <
a) <
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Let 'T be the transposed mapping Bf that is,'T : x € X — 'Tx € Z' is defined by
(,'TX) = (T, X), wherez€ Z. Then'T € L(X,Z") and|'T| = ||T|| < SV(a). Also'T =
a(t—) in the sense of (i), since for evere X, we have

(zo'T,X) = (2 'TX) = (T,,x) = (lim (zoa)(t—€),x) = lim ((zoa)(t —€),X)

e—0, e—0,

and we finished the proof. O

In view of Corollary 2.1, we define the space
SV, ([a,b],L(X,Z)) = {0( € S\Vi([a,b],L(X,Z")); zoa € BV, ([a,b],X"), z€ Z}

which is complete when equipped with the semi-variation norm. This result can be found
in [14], Theorem 1.3.7. We include it here.

Theorem 2.2. S\, ([a,b],L(X,Z’)) is a Banach space with the semi-variation norm.

Proof. By Theorem 2.2 (i), for every € Z, the mapping
F o€ SV([a,b],L(X,Z)) — zoa € BVy([a,b],X)

is continuous. By Theorem 2.BV;" ([a,b],X’) is a closed subspace BW,([a, b, X’) and
thereforeS\4' ([a,b],L(X,Z’)) = N {(F,) 1(BVa([a,b],X’)); z€ Z} is a closed subspace of
the Banach spac®\4([a, b],L(X,Z’)) which implies the result. O

2.2. Riemann-Stieltjes Integration

For the next results we need the concept of the Riemann-Stieltjes integral which we define
by means of tagged divisions.
A tagged divisiorof [a, b] is any set of pairg;, i) such thatt)) € Djap and§; € [ti1,1]
for everyi. In this case we writél = (§j,ti) € TDjap, WhereT Djyp denotes the set of all
tagged divisions ofa, b]. Any subset of a tagged division [, b] is atagged partial division
of [a,b] and, in this case, we writgé € TPDj, .
A gaugeof a setE C [a,b] is any functiond : E — ]0, e[. Given a gaug® of [a,b], we
say thatd = (&j,ti) € TPDyap is &-fine if [ti_1,t] C {t € [a,b];[t —&| < d(&i)} for everyi,
that is,

&icftiia,ti] Cl&—3(&).&+3(E), i=12...[d.

Now we will define the Riemann-Stieltjes integrals by means of tagged divisieas
(&i,t) of [a,b] and constant gaugés(i.e., there is &y > 0 such thad () = &g for every
¢ < [a,b]).

Let (E,F,G) be aBT. Any functiona : [a,b] — E is said to be Riemann integrable with
respect to a functioff : [a,b] — F if there exists ah € G such that for everg > 0, there is
a constant gaug&of [a, b] such that for everg-fined = (&;,tj) € TDja

|d|

21[0( (t) —o(ti-o)] F (&) -1

< E.
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In this case, we writé = f;’da (t)f(t).

By Rs ([a,b],E) we mean the space of all functioos [a,b] — E which are Riemann
integrable with respect tb: [a,b] — F.

Analogously we say thdt: [a,b] — F is Riemann integrable with respectdo [a,b] —
E if there exists aih € G such that for everg > 0, there is a constant gaugef [a, b] such
that for everyd-fined = (§;,ti) € TDp,

|d|

_;G (&) [F(t) — f (ti)] —

< E.

ThenR® ([a,b],F) denotes the space of all functioris [a,b] — F which are Riemann
integrable with respect to a given: [a,b] — E with integrall = f:a (t)df(t).

The integralsf;’da (t)f(t) and f;’a(t)df(t) defined above are known as Riemann-
Stieltjes integrals.

Consider thd8T (E,F,G) withE=Y'=L(Y,R),F =L(X,Y),G=X"=L(X,R) and
B(y,u)=you,forally e Y andue L (X,Y). We will use the identification

d d
/Cdy(t)oK(t,s):/c K (t, )" dy(t),

wherey: [a,b] — Y’,K: [c,d] x [a,b] — L (X,Y) andK (t,s)" denotes the adjoint & (t,s) €
L(X,Y).

2.3. Some Properties

Let E be a normed space. BY([a,b],E) we mean the space of all continuous functions
from [a, b] to E endowed with the usual supremum notfv|,,. We define
Ca([a,b],E) = {f €C([ab],E); f (a) =0}.

The next result is well-known. It gives the Integration by Parts Formula for the
Riemann-Stieltjes integrals. For a proof of it, see for instance [13] or [7], Theorem 2.5.

Theorem 2.3 (Integration by Parts). Let (E,F,G) be a BT. If eithemx € SB([a,b],E)
and fe C([a,b],F),ora eC([ab],E)and fe BV([ab],F), thena € R¢([a,b],E), f €
R%([a,b],F) and the Integration by Parts Formula

b b
/ da (t) f(t):a(b)f(b)—a(a)f(a)—/ a(t)df ()

holds.

The assertions in the next remark follow by the Integration by Parts Formula and some
easy computation.

Remark 2.2. Suppos€E,F,G) is a BT anda € SB([a,b],E). If we define

b
Fa(f):/a da®)f@t), feC(abl,F),

then k5 € L(C([a,b],F),G) and||Fy|| < SBa). In particular we have
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» fE =F"and G=C or R asin Remark 2.1, then givenc BV([a,b],F’), there exists

b |d|
Folf) = [ (F(0).da() = im 5 (f&).a)~ab-a),  feO(ablF).
where d= (&;,tj) € TDjzp and Ad = max{ti —t_1;i = 1,2,...,|d|}. Also K €
C([a,b],F") and||Fy|| <V (a).

o If a € SV([a,b],L(X,Y)), then for every fe C([a,b],X) there exists the
Riemann-Stieltjes integrqlfda (t) f (t). Furthermore {(f) = f;da tf(), fe
C([a,b],X), issuch that F € L(C([a,b],X),Y) and||Fy|| < SV(a).

The next theorem says that all operatord_{i€([a,b],X),Y)) can be represented by
functions of bounded semi-variation. The version we present here is a special case of [13],
Theorem 1.5.1. In particular, it will be shown later thatyif= Z’, thenL(C([a, b], X),Y))
can be represented by functions of bounded semi-variation which are right continuous.

Theorem 2.4. The mapping
a € S\4([a,b],L(X,Y)) — Fq € L(C([a,b],X),Y)

where K (f) = f:da(t)f(t), for f € C([a,b],Y), is an isometry (i.e/|Fq|| = SV(a)) of the
first Banach space onto the second. We also Ui = Fy(XjatX), X € X, Wherexjay
stands for the characteristic function [af;t].

We proceed with the presentation of results borrowed from [14] with their proofs.
In the sequel, we assume tltas some point in the intervad, bj.
Givena € BV([a,b],Y’), let us define an auxiliary functiam: [a,b] — Y’ by

0, t=a,
at) = { a(t+) —a(a), telab, (3)
a(b)—a(a), t=h.

The next result, which can be found in [14], Theorem 1.2.12, will be useful to prove that the
operators o€([a,b],Y)’ can be represented by element8bf([a,b],Y’).

Lemma 2.3. Leta € BV([a,b],Y’). Then
(i) @ e BV ([a,bl,Y") and V(a) <V(a);
(if) Forevery feC([a,b],Y), Fa(f) = Fu(f).

Proof. Let us prove (i). By the definition off, a(a) = 0 andd is right continuous at
t €]a,b[. Hencea € BV ([a,b],Y’). It remains to prove that(a) <V (a).
We can suppose, without loss of generality, théa) = 0. Then givene > 0 and
d = (i) € Djap), there exists €]ti1,ti[, i = 1,2,...,]|d| — 1, such thati(s+) = a(s) (by
Proposition 2.1) anfla(ti+) —a(s)|| < €. Therefore
[ati+)—a(ti-o)l < [lati+)—a(s)+]la(s)—a(s-2)|+[ati-1+) —a(s-1)|
< la(s) - a(s-a)||+2.
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If we considerd’ = (s) witha=s <51 < ... <Sg-1 < Sg = b, then

\d| \d| |d|

2 ati) —at-a)l < 3 la(s) —as-a)l+ 5 2

and henc&/qy(a) < Vg (a)+2|dje <V (a)+2|d|e. ThusVy(a) < V(a) (sincee is indepen-
dent of the choice ofl) and therV (@) <V (a).
Now we will prove (ii). By definition, we have

|d|

Fa(f) = [ (1(0).da(0) = Jim 3 (1(8).0(t) (s 1),

Ad—»Oi:

whereg; € [ti_1,t]. We may suppose, without loss of generality, théa) = 0 and then
Proposition 2.1 impliesi(t) = a(t), for allt € [a,b] but a countable subset. Then if we take
the pointg; of the divisiond = (tj) € Dy in the complement of that countable subset, we
obtain (ii). O

The next representation theorem can be found in [14], Theorem 1.2.13.
Theorem 2.5. The mapping
a € BV([a,b],Y’) — Fy € C([a,b],Y)’

is an isometry (i.e.

Fu|| =V (a)) of the first Banach space onto the second.

Proof. It is clear that the mapping is linear afiéfy|| < V(o). We will prove that the
mapping is one-to-one, that is,# 0 impliesFy # 0. It is enough to show that there exists
f € C([a,b],Y) such thaty(f) # 0.

If a(b) # 0, then there existg € Y such thatyp, a(b)) = 1. If we takef (t) = yo, then

b
Fo(f) :/a (Yo,da(t)) = (yo,a(b)) = 1.

If a(b) #0, letto €]a, b[ be such thatt(tg) # 0 and consideyo € Y such thatyp, a(tg)) = 1.
Define

0, t<to
fat) =< n(t—to)yo, to<t<to++:
Yo, to+i<t<h

Thenf, € C([a,b],Y) and|| fa|| = [lyo|

, N € N, which implies

to+32 b
Falf) = [ "nit—to)yo.da(t) + [, (yo.0a(t).

0 tot+5
where the second integral equas, a(to + %)> which converges tdyo, o (to+)) = 1 and
the norm of the first integral is bounded HJyOHV[tO’tOJF;](O() which converges to 0.
Now we will prove that the mapping is onto and it is an isometry. It suffices to show

that for everyF € C([a,b],Y)’, there exists am € BV([a,b],Y’) such thatF = F; and
V(a) < ||F||. Then by Lemma 2.3, the same appliesitgiven by (3).
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SinceC([a,b],Y) is a subspace of the spaB€a, b],Y) of bounded functions frorfa, b]
to Y, then the Hahn-Banach Theorem implfes C([a,b],Y)" admits a linear continuous
extensiorF € B([a,b],Y)’ such that|F|| = ||F|].

If for all s€ [a,b], s# ¢, we definefs(t) =1 fora<t <s Ps(t) =0fors<t <b,
andyc = 0, then givery € Y andt € [a,b], yyx € B([a,b],Y) and this function takes only
two values: 0 ang. The mapping/ € Y — F(y) € R is linear and continuous because
[F(yd)| < |IF]|l|lyll. Therefore there exists one and only one elencghf € Y’ such that
F(ydr) = (y.a(t)),yeY.

We assert thatt € BV([a,b],Y’) andV(a) < ||[F||. Indeed, giverd = (t;) € Djap, We

have
[e]

Va(a) = Z\\G ti) — ot

|d|

= sup{ _Zl<yi,0((ti)—a(ti,1>
- |d|
= ”;‘l@ (i;y.(wti —wm)

since Hz, 1y|(L|Jti -y ,)|| < 1. Also, given f € C([a,b],Y), we have F(f) =
fa( (t),da(t)), thatis,Fy = F. Indeed because f@f € [ti_1,t;], we have

Y EeY, |lyill <1}

<|IFll

\d|

[Uf0.da) = Jim 3 (1(&).a) - ats )

Ad—0 £

|d|
= AI(ijnjoF (Zf )Wy — %1)) =F(f),

since linhg—o Zi‘i‘l f(&) (W, —Wy_,) = f, where the limit is taken in the spa&[a,b],Y)
of bounded functions frorfa,b] to Y. Also

|d| |d|
=3 f(& : = su f(& - (9)]] < f),
Zl llJtI thl—l) agsgpb Zl lIJt| llJt|—1( )] — Q)d( )
wherewy( f) is the oscillation off with respect tal and converges to 0 dsl — O. O

Remark 2.3. Theorem 2.5 also holds for Bfa, b],Y’), c € [a,b], instead of BY([a, b],Y’).

The next two results are also borrowed from [14] (see respectively Theorem 1.3.8 and
Corollary 1.3.9 there).

Theorem 2.6. The mapping
a € SV ([a,b],L(X,Z")) — Fy € L(C([a,b],X),Z")

is a linear isometry (i.e.||Fy|| = SV(a)) of the first Banach space onto the second.
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Proof. The mapping is clearly linear. AlsgFy|| < SV(a) by Remark 2.2.

Let us prove that the mapping is injective. df# 0, there existdy €]a,b] such that
a(to) # 0. Hence there existse Z such thatzoa(tg) # 0, wherezo a(t) € X'. Therefore
zoa € BV ([a,b],X") andzo a # 0. By Theorem 2.5, # 0, whereF,q is the element
of C([a,b],X)" defined byzo a. Thus there exist§ € C([a, b],X) such thaF,q(f) # 0. On
the other hand,

b b
Fea(f) = [ (F(0.d(zoa)(1) = (2. [ da(t) F(1) = (2 Ful )

and hencé~(f) # 0, thatis,Fy # 0.

Now we will show that given F € L(C([a,b],X),Z"), there existsa €
SV ([a,b],L(X,Z')) such thaF = Fy andSV(a) < ||F||.

For everyze Z, we havezoF € C([a,b],X)" and||zoF| <||Z||||F||. Then Theorem 2.5
implies that there is one and only one elemept BV, ([a,b],X’) such thazo F = F,,
that is, for everyf € C([a,b],X)’, we have

b
(@oF)(1) = [ (1(1).day(t)
a
andV(az) = ||zoF].
We assert thati;, 5, (t) = 0 (t) +05(t), t € [a,b]. Indeed, we havéz; + ) o F =
z10F + 2z 0F and hence for every € C([a,b], X)’, we have

b

b
{700z 1) = [ (10, d(a +0) (1)

a

and then the uniqueness of the representation in Theorem 2.5 implies (i). In a similar way,
one proves thatty,(t) = Aa(t). Then fort € [a,b] andx € X, we definea(t)x € R? by
(a(t)x)z= (x,0,(t)) and hence the mappinge Z — (a(t)x)z= (X,0.(t)) € R is linear.
It is also continuous, sincka (t)x|| = sup{|(X,0.(t))|;z€ Z, ||| < 1} and|{x,0(t))| <
I llo(t)]] < IXIV (az) = [x]| lzo F | < [Ix][ [ |12l and henceia(t)x] < [Ix] [F .
We havea € L(X,Z'), since the mappinge X — a(t)x e Z' is linear and|a(t)|| < ||F||
(by the last inequality).
We also assert thate S\ ([a,b],L(X,Z’)) andSV(a) < ||F||. Indeed, by the definition
of a, we havezo o = a; € BV, ([a,b], X’) for everyz € Z. Hence by Proposition 2.2 (i),

SV(a) =sup{V(zoa);ze Z, ||Z|| <1} =sup{V(az);z€ Z, ||z|| <1} <||F],

sinceV (a,) = ||zoF|| < ||Z| ||F]I-
Finally F = Fq, since for everyz € Z, we havezoF = Fy, = Fzq = Zo Fy and then
ZoF = Z0 Fg. D

The next result is a consequence of Theorem 2.6 @ithY’.

Corollary 2.2. For every k € L(C([a,b],X),Y), there exists one and only ore e
S\t ([a,b],L(X,Y")) such that F= Fg.

Remark 2.4. Under the hypotheses of Corollary 2.2, we write = a. Note that the
mapping F— oF may not be onto if Y£Y.
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By Corollary 2.1, ifa € SV([a, b],L(X,Z')), then for everyt € [a,b], there exists one
and only one elememnti(t+) € L(X,Z') such that for everx € X and everyz € Z, we have

lim)(a (t+€)x,2) = (a(t+)x,2).

If we definea™(t) =a(t+), a<t <b, anda*(a) = a(a), thena™ is a function of
bounded semi-variation and we write” € SV*(]a,b],L(X,Z")). Moreover for every
f € C([a,b],X), we have[>da* (t)f(t) = [Pda(t)f(t) and|Fy| = SV(a™).

The next result follows from Theorem 2.6 and [1], Satz 10.

Theorem 2.7. The mapping
a € S\, (Ja,b],L(X,Z")) — Fy € L(C([a,b],X),Z')
is a linear isometry (i.e.||Fy|| = SV(a)) of the first Banach space onto the second.
Similarly as in Corollary 2.2, we have

Corollary 2.3. For every Kk € L(C([a,b],X),Y), there exists one and only ore
S\t (]a,b],L(X,Y")) such that F= Fg.

LetS\{ff(}a bJ, L(X, Y)) denote the space of functioas S\grf(]a b],L(X,Y”)) such
thata(a) € L(X,Y) and; a(s)xdse Y, for allt € [a,b] andx € X. Letxa be the characteris-
tic function of a seA C [a,b]. The next theorem completes Corollary 2.3 and characterizes
the image of the mapping — ag. Itis borrowed from [11] (Theorem 1.4 there).

Theorem 2.8. The mapping
a €S\ (Jabl,L(X,Y)) = Fa € L(C([a,b], X),Y),

where K (f) = fa da(t)f(t), is an isometry (i.e.||Fy|| = SV(a)) of the first Banach space
onto the second. Furthermoﬁa )xds= —Fq(gtx) anda(a)x = —Fy(X[apX), Where for

t € [a,b] and xe X, we define 19(( S) = (s—a)x, ifa<s<t, and gx(s) = (t —a)x, if
t<s<bh.

Proof. GivenF € L(C([ b], X),Y), let a be the corresponding element by Corollary 2.3.

We assert that € S\, ([a,b],L(X,Y)). Indeed. Sinceyx € C([a,b], X), thenF (gr) €Y.
But

Flo) = [ da(9a.4(9 =~ [ a(9dg.(s = - [ a(sds

where we applied the Integration by Parts Formula (Theorem 2.10) to get the second equal-
ity (with a(b) = 0 andg x(a) = 0). Similarly, one can prove th&t(X(apX) = —a(@)x €Y.

The functionsg: x and X3 X form a total subset o€([a,b],X). By the fact that
S\g”(]a, b],L(X,Y)) is a closed subset &\, (]a,b],L(X,Y")), it follows that the isome-
try is onto. O

Now, let us denote b\, (ja,b],L(X,Y)) be the set of alt € S\ (]a, b, L(X,Y))
such thati(a+) = a(a) instead ofa(a) € L(X,Y). The next two results are respectively
Theorems 1.5 and 1.6 from [11].



40 M. Federson and R. Bianconi

Theorem 2.9. The mapping

ac S\gf([@ b],L(X,Y)) — Foa € L(Ca([a,b],X),Y)
is an isometry of the first Banach space onto the second.

Proof. At first, we will prove that the mapping is one-to-one. lebe such thak, f = 0,
for every f € C4([a,b],X). Then for everyt € [a,b], x e X andy € Y, we have

t
0= (Fa(ai) = - [ (@(xy)ds

Hencea = 0, since by hypothesis(s+) = a(s), for everyse [a, b[.

Now we will prove that the mapping is onto. Givene S\{) (]a b],L(X,Y)), let us
defineas(a) = a(a+) anda,(t) = a(t), if a<t <b. Thena, € S\{ff([a b],L(X,Y)),
sinceay(a+) = aa(a). Also, for everyf € Cy([a, b],X), we havery, (f) = Fy(f).

The isometry follows from Theorem 2.8. O

The notation below is going to be used in the next theorem.
Given a function : [c,d] x [a,b] — L(X,Y"), we writea'(s) = as(t) = a(t,s) and we
consider the following properties:

(C%): Fora<s<bandxe X, the functiort € [c,d] — as(t)x € Y is continuous,

(C°): Fora<s<bandxe X, the functiort € [c,d] — [Sa(t,0)xdo € Y is contin-
uous, and fox € X (ands= a), the functiort € [c,d] — aa(t )x €Y is continuous,

(SW): Fort € [c,d], o € SV([a,b],L(X,Y)) andSW(a!) ;= sup SV(a') < oo. If
c<t<d
moreoven (t,b) = 0 for allt € [c,d], then we write $\{') instead of ).

(S /Y): Fort e [c,d], ot € SV (a, b, L(X,Y)) andSV¥(a) := sup SV(a!) < e
c<t<d
We write a € C°SW([c,d] x [a,b],L(X,Y)) if a satisfies €°) and SW). Analo-
gously, a € C°S\'([c,d] x [a,b],L(X,Y)) if a satisfies C°) and SV;). We write a
Cos\v; /Y ([c,d] x [a,b],L(X,Y)) if a satisfies €) and G\ /Y.
The next theorem is borrowed from [11], Theorem 1.6.

Theorem 2.10. The mapping
a e €Sy ¥([c.d] x [a,b],L(X,Y)) — Fq € L(C([a,b], X),C([c.d],Y)),

where(Fy f)(t) = fa dsa(t,s)f(s), c<t <d, is an isometry (i.e.|Fy|| = SW(a)) of the
first Banach space onto the second. Besiffs(t,0)xdo = —F4(gsx)(t), a< s< b and
a(t,a)x = —Fa(XapX)(t)-
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Proof. By [13], Theorem 1.5.10 and the remark that follows it ([13], p. 49-52), specialized
for the Riemann-Stieltjes integral, the mapping

o € C°SW([c,d] x [a,b],L(X,Y)) — Fy € L(Ca(]a,b],X),C([c,d],Y))

is an isometry. Reciprocally, giveh € L(C4([a,b], X),C([c,d],Y)) andt € [c,d], Theorem
2.9 implies the continuous mappirfgs C([a, b],X) — (F f)(t) € Y can be represented by
ana' € S\gH ([a,b],L(X,Y)). The proof is complete. O

We call any subseA C X relatively compacif the closure ofA in X is compact. We
denote byX (X,Y) the subspace of compact linear operatord {X,Y). In particular,
we write K (X) = K (X, X). We conclude this section of auxiliary results mentioning the
Fredholm Alternative for the Riemann-Siteltjes integral. For a proof of it, see [12] or [3],
Theorems 2.4 and 2.5.

Theorem 2.11. Suppose K& C° (S\4)"([a,b] x [a,b],L (X)). Given te [a,b], let
K(t,s0)" X = Eln;] K (t,s)"X
for every g € Ja,b[ and every k€ X’. Suppose the mapping
K?:teab] — K () =K'e S\([a,b],L(X))

belongs to G[a,b],SV4([a,b], K (X))). GivenA € R, A # 0, consider the integral equations

b

)\x(t)—/ dK (t,5)x(s) = f (), telab], @)
b

)\u(t)—/ dK (t,5)u(9) =0, telab, (5)

)\y(S)—/abK(t,S)*dy(t) :g(S), SE [a7b]7 (6)
b

)\z(s)—/ K(t,9)"dz(t) =0, se[ab]. 7)

Then the Fredholm Alternative holds for these equations, that is,

(i) either for every fe C([a,b],X), equation (4) has exactly one solution and the same
applies to equation (6),

(i) or equation (5) has non-trivial solutions and the same applies to equation (7).

If (ii) holds, then equation (4) (respectively equatif8)) admits a solution if and only
if f;’ f (t)dz(t) = O for every solution z of equation (7) (respectivéeﬁ/u (t)dg(t) = 0O for
every solution u of equation (5)) and the space of solutior{§)ias finite dimension equal
to that of the space of solutions ¢f) which equals the codimension(@f — F« )C([a, b], X)

in C([a, b, X) and the codimension ¢hl — (Fx)*)BV, ([a, b],X’) in BV, ([a, b], X").



42 M. Federson and R. Bianconi

3. Gauge Integrals in Banach Spaces

3.1. Definitions and Terminology

In this section, we consider functions [a,b] — L(X,Y) andf : [a,b] — X.

We say thatx is Kurzweil f-integrable(or Kurzweil integrable with respect to)fif
there existd € Y such that for everg > 0, there is a gaugé of [a, b] such that for every
&-fined = (&i,t) € TDp,

|d|

ZLG (&) [F () = F i) -1

< E.

In this case, we writé = (K)f;’a (t)df(t) anda € Ks ([a,b],L (X,Y)).
Analogously, we say that is Kurzweil a—integrable(or Kurzweil integrable with re-
spect toa), if there existsl € Y such that givere > 0, there is a gaugd of [a,b] such

that
[d]

ZI[O( (t) —o(ti-1)] F (&) —|

<€,

wheneverd = (&j,ti) € TDjyp is &-fine. In this case, we write = (K)f;da (t)f(t) and
f e KY([a,b], X).

If the gauged in the definition ofr € K¢ ([a,b],L (X,Y)) is a constant function, then we
obtain the Riemann-Stieltjes integrﬁja (t)df(t) and we writea € Ry ([a,b],L(X,Y)).
Similarly, when we consider only constant gaudes the definition off € K% ([a, b], X),
we obtain the Riemann-Stieltjes integrﬁj’ da (t) f (t) and we writef € R* ([a,b], X).

The vector integral of Henstock is more restrictive than that of Kurzweil in a general
Banach space context. We define it in the sequel.

We say thati is Henstock fintegrable(or Henstock variationally integrable with re-
spect to J, if there exists a functioAs : [a,b] — Y (called theassociate functioof o) such
that for everye > 0, there is a gaug®of [a, b] such that for everg-fined = (&;,t;) € T Dja,

|d|

;Ha (&) [f (t) — f(tia)] — [Ar (t) —As (tia)]|| <&

We writea € H¢ ([a,b],L(X,Y)) in this case.

In an analogous way we define the Henstoelntegrability of f : [a,b] — X and we
write f € H? ([a,b], X) in this case (see [6]).

Clearly Hs ([a,b],L(X,Y)) C Ks ([a,b],L(X,Y)) and H* ([a,b],X) c K%([a,b],X).
If we identify the isomorphic spaced (R,R) and R, then all the spaces
Kt ([a,b],L(R)), Kt ([a,b],R), Hs ([a,b],L(R)) andHs ([a,b],R) can also be identified,
sinceK; ([a,b],R) = H¢ ([a,b],R) (see, for instance, [16], for a proof of this fact).

Given f : [a,b] — X anda € Ks ([a,b],L (X,Y)), we define the indefinite integral; :
[a,b] — Y of a with respect tof by

t

af(t):(K)/ a(s9)df(s), telab.

a
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If in additiona € H¢ ([a,b],L(X,Y)), thena¢ (t) = At (t) — A¢ (a) for everyt € [a,b].
In an analogous way, givem: [a,b] — L (X,Y), we define the indefinite integrdP :
[a,b] — Y of f with respect tax by

fa t):(K)/atdu(s)f(s), tefab,

for every f € K% ([a,b], X).

In particular, wheru (t) =t, then instead oK ([a, b], X), R* ([a,b], X), H* (
and f we write, respectivelyK ([a,b],X), R([a,b],X), H ([a,b],X) and f, that i
(K) [%  (s)ds for everyt € [a,b].

We proceed so as to define the equivalence classes of Kurzweil and of Henstock inte-
grable functions.

Let mdenote the Lebesgue measure. A functiarja, b] — X satisfies thé&trong Lusin
Conditionand we writef € SL([a,b], X) if given€ > 0 andB C [a,b] with m(B) = 0, there
is a gauged of B such that for everg-fined = (&;,ti) € TPDpp with & € B for all i, we
have

b

[, b], X)
s,f(t)=

|d|

3 M6~ fyl<e

If we denote byAC([a, b], X) the space of all absolutely continuous functions fiiart]
to X, then we have

AC([a,b],X) C SL([a,b],X) c C([a,b],X).

In SL([a,b], X), we consider the usual supremum nofim||., induced fronC ([a, b], X).

Given f € SL([a,b],X) anda € H¢ ([a,b],L(X,Y)), letB: [a,b] — L(X,Y) be such
that B = o mralmost everywhere. Thef € Hs ([a,b],L (X,Y)) and B (t) = a¢ (t), for
everyt € [a,b]. See [6] (the corollary after Theorem 5 there) for a proof of this fact. An
analogous result holds when we replatg[a, b],L (X,Y)) by K¢ ([a,b],L (X,Y)).

Supposef € SL([a,b],X). Two functionsf,a € Ks ([a,b],L(X,Y)) are calledequiv-
alentif and only if B; = @. We denote by g ([a,b],L(X,Y)) andH+ ([a,b],L (X,Y))
respectively the spaces of all equivalence classes of functiafs(¢d, b],L (X,Y)) and of
H: ([a,b],L (X,Y)) and we endow these spaces with Alexiewicz norm

(K)/:a(s)df(s) te [a,b]} = ||atl.,

where we recall that - || is the usual supremum norm.

afas = sup{

3.2. Some Properties

In this section, me mention several properties of the gauge integrals of Kurzweil and of
Henstock. As it should be expected, both Kurzweil and Henstock vector integrals are linear,
additive over non-overlapping intervals and invariant with respect to changes on sets of
Lebesgue measure zero.

The result that follows is known as the Saks-Henstock Lemma and it is useful in many
situations. For a proof of it, see [17], Proposition 16, for instance. A similar lemma also
holds if we replac& ([a,b],L (X,Y)) by R¢ ([a,b],L(X,Y)).
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Lemma 3.1 (Saks-Henstock Lemma)Given f: [a,b] — X, leta € K¢ ([a,b],L(X,Y))
that is, for everye > 0, there is a gaugé of [a, b] such that

|d|

b
> a(@)[f )~ f(6-0] - (<) [Ta@df©

<E,

whenever d= (1) € TDjap is &-fine. Then for everg-fine d = ({j,sj) € TPDy,

< E.

Jlel{(K)/sjsle(t)df(t)—G(Zj)[f (sj) — f (Sjl)}}

The next result is the Fundamental Theorem of Calculus for the Henstock integral. The
proof follows standard steps (see [16], p. 43, for instance) adapted to Banach space-valued
functions.

Theorem 3.1 (Fundamental Theorem of Calculus)If F € C([a,b],X) and there exists
the derivative F(t) = f (t), for every te [a,b], then f€ H ([a,b],X) and

t
(K)/ f(s)ds=F (t)—F(a), telab.

The next two versions of the Fundamental Theorem of Calculus for Henstock vector
integrals can be found in [6], respectively Theorems 1 and 2 there.

Theorem 3.2. If f € SL([a,b],X) and Ac SL([a,b],Y) are both differentiable and :
[a,b] — L(X,Y) is such that Ait) = a(t) f/(t) for m-almost every € [a,b], thena €
H¢ ([a,b],L (X,Y)) and A= at.

Theorem 3.3.1f f € SL([a,b], X) is differentiable anax € H; ([a,b],L (X,Y)) is bounded,
thends € SL([a,b],Y) and there exists the derivativ1) (t) = a (t) f'(t) for m-almost
every te [a,bl.

Corollary 3.1. Suppose ¥ SL([a,b],X) is differentiable and non-constant on any non-
degenerate subinterval ¢d,b] anda € Hs ([a,b],L (X,Y)) is bounded and such that; =
0. Thena = 0 m-almost everywhere.

The next result is a particular case of [7], Theorem 2.2.
Theorem 3.4.1f f € C([a,b],X) anda € K¢ ([a,b],L (X,Y)), thenat € C([a,b],Y).

For the Henstock vector integral we have the following analogue of Theorem 3.4. A
proof of this result can be found in [6], Theorem 7.

Theorem 3.5.1f f € SL([a,b],X) anda € Hs ([a,b],L (X,Y)), thenat € SL([a,b],Y).

The next result follows from Theorem 3.5. A proof of it can be found in [5], Theorem
5.
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Theorem 3.6. Suppose £ SL([a,b],X) is non-constant on any non-degenerate subinter-
val of [a,b]. Then the mapping

a € Hi([ab],L(X,Y))—ar €Ca([a,b],X)
is an isometry (i.e|dt||,, = [|a]|5 1) onto a dense subspace aof @, b}, X).

The next result gives us a substitution formula for Kurzweil vector integrals. It also
holds for the Riemann-Stieltjes integral instead. For a proof of it, see [4], Theorem 11.

Theorem 3.7. Let a € SV([a,b],L(X,Y)), f:[ab] — Z, B € K¢ ([a,b],L(Z,X)) and
g(t) = Bs(t) = [LB(s)df(s), t € [a,b]. Thena € Ky([a,b],L(X,Y) if and only if af €
Kt ([a,b],L(Z,Y)). In this case, we have

t

(K)/:a(t)g(t)df(t)_/aba(t)dg(t)—/aba(t)dUa

b
) [ a®Bmdf)

Using Theorems 3.4 and 2.3, we have the next corollary whose proof can be found in
[4], Corollary 8.

Corollary 3.2. If a € SV([a,b],L(X,Y)), f € C([a,b],W), B € K ([a,b],L(W,X)) and
g(t) = B (t) = [LB(s)d f(s), t € [a,b], thenaP € K¢ ([a,b],L (W,Y)) and (8) and (9) hold.

By E ([a,b],L(X,Y)) we mean the space of all step functions frgab] to L (X,Y),
that is,a [a,b] — L(X,Y) belongs toE ([a,b],L(X,Y)) if and only if there is a division
d = (i) € Djg and there are numbecs;, dz,...,aq such thato(t) = Zi@lo‘iX[ti,l,ti[(t)-
for everyt € [a,b].

For a proof of the next proposition, see [5], Theorem 8.

B(s)df(s)] ®

and
< [SV(a)+[a(@]] I1Blla - 9)

Proposition 3.1. Let f € SL([a,b],X) be differentiable and non-constant on any non-
degenerate subinterval ¢&, b]. Then the spaces(@,b],L (X,Y)) and E([a,b],L(X,Y))
are dense irK ¢ ([a,b], L (X,Y)) in the Alexiewicz nornj -|| .

4. Auxiliary Results

In this section we prove auxiliary results concerning vector gauge integrals which will be
useful in the next section. We start by giving a representation theorem which says that the
elements oK 4([a, b], L(R, X))’ can be represented by functions of bounded variation which
are continuous to the right.

Theorem 4.1. Given ge Sl([a,b],R) differentiable and non-constant in any non-
degenerate subinterval ¢d, b], then the mapping

a € BV, ([a,b],X’) — Hq g € Kg([a,b],L(R, X)),

where H, ¢(f) = (K)f;’(x(s)f(s)dg(s), is an isometry (i.e.||Hq g/ =V (a)) onto and, for
every te [a,b] and every x L(R,X), we have/i a(s)xdg(s) = Ha,g(X[agX)-
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Proof. The mapping is clearly linear.

We assert that the mapping is one-to-one. Indeed. Giverfa, b] andx € L(R, X), we
define a functiorfy x : [a,b] — L(R,X) by fox(s) = xif s€]a,p], and byf, x(s) = 0 other-
wise. Then Theorem 2.3 impliéfs x € Ry([a, b], L(R, X)). AlsoHq ¢(fo.x) = /£ a(s)xdy(s).
Since for eachx € L(R,X), the functiona(-)x : [a,b] — L(R) is such thata(-)x €
Rg([a,b],L(R)) C Kqy([a,b],L(R)) = Hg([a,b],L(R)), then by the Fundamental Theorem
of Calculus (Theorem 3.2), there exisks((K) [P a(s)xdg(s)) = a(p)xd (p) for m-almost
everyp € [a,b].

If a # 0, then there exigi € [a,b] andx € L(R, X) such thati(p)X # 0. Besides, we can
suppose without loss of generality tligfp) # 0 by the invariance of the integral over sets of
Lebesgue measure zero. Indeed. From [6], we KEYgL a(s)xdg(s) = (K) [P a(s)xd (s)
for everyp € [a,b]. In fact the integral above is in the Riemann-Stieltjes sense. There-
fore we have, in particulaf,? a(s)xdg(s) = [P a(s)xd (s) and hencel, (ffa(s)xdg(s)) =
a(p)xd (p) # 0. ThusHq g(fex) = [Pa(s)xdg(s) is non-constant and henk ¢(f5x) #0
and the mapping is one-to-one.

SinceSV([a,b],L(X,R)) = BV([a,b],X’), it follows from Corollary 3.2 that|Hq g|| <
V(a).

Let f € Kg([a,b],L(R,X)) andH e Kq([a,b],L(R,X))" and defmeH(fg) = —H(f).
By Theorem 3.6, there is a unique continuous extenS|oH @b Ca([a,b],X) which we
still denote byH. This new operatorl,—|, belongs taCa([a, b, X)'. If o represents$, then
Theorem 2.9 |mpI|eH(fg) fa da(s) fg( s) and||H|| = V(a). Moreover

b - b - b
H(f) = —R(To) = — [ a(9dfy(s) = | da(9)f(s) = (K) [ a(9)(9dgls).

where we applied Theorem 2.3 and Corollary 3.2t0 obtain respectively the last two equali-
ties. Since by definitiorj f||g = || fg]|, then||H|| = |[H|| = V(a) and the result follows. [

Let g € SL([a,b],Z). Given a function : [c,d] x [a,b] — L(X,Y"), if a satisfies the
properties €9) and G\, ' ), where

(63): Fora<s<bandxe L(Z,X), the functiort € [c,d] — [Ja(t,0)xdg(0) €Y is
continuous, and fox € L(Z,X) (ands= a), the functiort € [c,d] — a(t,a)xd (a) € Y
iS continuous,

and, as before,

(S /Y): Fort e [c,d), ot € S\ (a, b, L(X,Y)) andSV¥(a) := supdSV(cxt) <o,
c<t<

then we writea € CISV' /" ([c,d] x [a,b],L(X,Y)). If, in addition, we consider only
functions of bounded variation in propert$\{ /"), then we writea ¢ égBVJf“([c, d] x
[a,b],L(X,Y)) instead ofx € égS\gf”([c,d] x [a,b],L(X,Y)).

Notice that in the particular case when = R, the spacesﬁéjj BVb+ / “(Je,d] x
[a,b],L(X,Y)) andCgBV;'([c,d] x [a,b],L(X,Y")) can be identified and then we write sim-
ply CgBV;'([c,d] x [a,b], X).
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The proof of the next result follows the steps of the proof of Theorem 4.1. However
instead of Theorem 2.9, one should apply Theorem 2.10.

Theorem 4.2. Let g€ Sl([a,b],R) be differentiable and non-constant in any non-
degenerate subinterval ¢d, b]. Then the mapping

a € CIBV;([c,d] x [a,b],X') > Hag € L(Kq([a, b, L(R,X)),C([c,d],R)),

where (Hq g(B))(t) = (K )fa (t,s)B(s)dg(s) for each te [c,d], is an isometry (i.e.,
|Hagll =V (a)) onto and, for every & [a,b], every te [a,b] and every x L(R,X), we

have ai(t,0)xdg(0) = (Hag(XagX)) (t):
Using Proposition 3.1, the next result follows easily.

Corollary 4.1. Under the hypotheses of Theorem 4.2, for every|a b|, every te [a,b]
and evenp € Kg([a, b, L(R, X)), we have/7a(t,0)B(0)dg(0) = (Hag(XiasB)) (D).

Let g € Sl(a,b],R). We say that an operatdt € L(Kg([a,b],L(R)),C([a,b],R)) is
causalif given f € K4([a,b],L(R)) = Kgy([a,b],R) andt € [a b], then f|5y = 0 implies
H(f)|jay = 0, whereh|s denotes the restriction of a functitrto a subsef of its domain.

We proceed as to show that in fact the isometry in Theorem 4.2 is onto over the space
of causal operators, providedt,s) = 0 for s> t. We need the next lemma.

Lemma 4.1. Leta € CZSV, /" ([a,b] x [a,b],L(X,Y)), g € SL([a,b],Z) be differentiable
and non-constant in any non-degenerate subintervaadd], and € K4([a,b],L(Z,X)).
Then the mapping t
€ lab]~ (K) [ alt,9p(s)dg(s) €Y
a

is continuous.

Proof. SinceE([a,b],L(Z,X)) is || - ||g-dense irKy([a,b],L(Z,X)) by Proposition 3.1, it is
enough to prove the result for every step funcfiara, b] — L(Z, X).
Letx € L(Z,X). We assert that the mapping

t
telab]— (K)/ a(t,9xdg(s) €Y

a

is continuous. Indeed. Giveax> 0 andp > 0, we have
t+p t t+p
() [ alt+p.sxdgs) = (K) [ alt+p.sydgs)+(K) [ aft+p.sxdgs).
a a

where(K) f;a(t+p,s)xdg(s) converges t¢K) [3a(t,s)xdg(s) asp — 0 by condition C)
for a.

Let 6 be the gauge ofa,b] from the definition of(K)f;’a(t,s)xdg(s) and suppose
(& [t,t+p]) € TPDgp is &-fine (thatisg € [t,t+ p] andp < §(€)). Then

H(K)/tt+pa(t+pjs)xdg(s)
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<

t+p
) [t psixgs) - e+ p &gt +p) - )] +

+lat+p,&)X(g(t+p) —gM)] <e+SV(a)[x] [lgt+p) —g)]l;

where we applied the Saks-Henstock Lemma (Lemma 3.1) to the first summand. Then from
the continuity ofg, the mapping

t
€ lab] — (K)/ a(t,s)xdgs) € Y
Ja
is right continuous and, in an analogous way, one can prove the left continuity. [

Theorem 4.3. Leta : [a,b] x [a,b] — L(R) be such thati(t,s) =0, for all s> t, and let
g € Sl([a,b],R) be differentiable and non-constant in any non-degenerate subinterval of
[a,b]. Then the mapping

o € CSBV, M ([a,b] x [a,b],L(R)) — Ha,g € L(Kq([a, b], L(R)),C([a, b, R)),

where (Hq g(f))(t) = (K )fa (t,s)f(s)dg(s) for each te [c,d], is an isometry (i.e.,
|IHa gl =V (a)) onto the subspace of causal operators.

Proof. By Theorem 4.2, it is enough to show that the mapping is onto.

If a: [a,b] x [a,b] — L(R) satisfies€Z) and 6V /) and moreoveu(t,s) = 0, for all
s>t, then Lemma 4.1 implieBly 4 is causal.

Reciprocally ifH € L(Kg4([a,b],L(R)),C([a,b],R)) is causal, then Theorem 4.2 implies
there is a uniquel € CGBVb”“([a b] x [a,b],L(R)) such thaH = Hy g. From the causal-
ity of H = Hq g, we have 0= (Hog(Xjt5X)) () = fPa(t,o)xdgo), for all t € [a,b] and
x € L(R). Besidesu'(-)x € Ry([a,b],L(R)) C Kg([a,b],L(R)) = Hy([a,b],L(R)) and then
Corollary 3.1 impliesu(t,s) =0, for all s> t. O

The next lemma will be employed in the proof of the theorem following it. For a proof
of the lemma, see [9] for instance.

Lemma 4.2 (Straddle Lemma). Suppose fF : [a,b] — X are such that F(§) = f (¢), for
all & € [a,b]. Then givere > 0, there exist$ (&) > 0 such that

[Ft)—F(s)—f &) (t—9)|<e(t—s9),
wheneveg —8() <s< & <t <&+0().

Wheng(s) = s, Theorem 4.4 below is, in fact, a particular case of [3], Theorems 3.6 and
3.7. The proof we give here is merely an adaptation of those theorems in [3] so that we can
obtain results concerning integral equations of Stieltjes-type characterized by the presence
of a functiong (in equations (1) and (2), for instance).

Theorem 4.4. Leta € 6gBVJ“([c, d] x [a,b],X"), g € SL([a,b],R) be differentiable and
non-constant in any non-degenerate subintervajagl], and kK : [c,d] x [a,b] — X' be
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such that K(t,s)x = [Sa(t,0)xdg(o), for each xe L(R,X). Then K € CN:"S\g“([a, b] x
[a,b], X"). Besides, we have

b

b
/a dsKq (t, S)B(S) = /a at,s)B(s)dg(s)

for every functior € C([a,b],L(R,X)) and all t € [c,d]. Suppose, in addition, that' €
SV([a,b], K (X,R)), for every te [c,d]. Then the mapping

Kg 1t [c,d] — Kg(t,-) € S\a([a, b],X’)
is continuous.

Proof. Sincea fulfills condition (63), thenKg(-, s) fulfills condition (C°), for eachs € [a, b].
Letx € L(R,X) andd = (s) € Djgp. Then

|d| [
2
<V(a")|x| llg(b) ~g(@)]
and hence&j = Kq(t,-) € SV([a,b],X"), for eacht € [c,d].
Note that, for every € [c,d] and every € L(RR, X), the functionKgy(t, -)x is continuous
on [a,b], since it is an indefinite integral (see Theorem 3.4).

) We assert thag € C([c,d], S\u([a, b],X")). Indeed. Letp € [c,d] andd = (s) € Djgp.-
Then

d|

Z [K§(s) —Kg(s-1)] x

_ /S a(t,p)xdg(p)] || _ H/aba(t,p)xdg(p)H <

S-1

|d|

> [(K5—K§) (8)— (K= KE) (5] x

kiKYl = Sv (K, —K9) = sup
d, [Ix|<1

dl r ,s S
=S [ | atodge) - | 10((to,p)xdg(p)] H -
b b
= sup | ["att.pixgp) - [ atto.p)xdgp)| = sup [Koft. B~ Kofto x|
d,[Ix[<1lla a d,[Ix[[<1

which tends to zero as— to, sinceKg(+,s) € C°([c,d],X’), for eachs € [a,b] and, in
particular,Kgy(-,b) € Co([c,d],X’).

Let B € C([a,b],L(R,X)), t € [c,d] andy = Eg. In accordance with Theorem 3.1 and
Corollary 3.7,0'B € Ky([a, b],L(R)) and

(K) /abdt(S)B(S)dg(S) = /abat(S)dy(S) = _/abds ((;(t(s))y(s)7 (10)

where we applied Theorem 2.3 to obtain the last equality. Hgées)x = [3at(p)xdg(p)
with Kg(t,-) € SV([a,b],X’) for eacht € [c,d], then Theorem 2.3 implies the Riemann-
Stieltjes integra!f;’ dsKy(t, s)B(s) exists for each € [c,d] and eact € C([a,b],L(R, X)).
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We also assert that

b b
| Kot 9B(S) = (K) | o (9)B(s)dg(s) (11)

for everyt € [c,d] and evenf € C([a,b],L(R,X)). Indeed. It is enough to prove that (11)
holds wher is a step function. Hence we need to show that for everyc,d] and every
x € L(R,X),

b b
/a dsKq(t, 9)x = (K) /a at(9)xdg(s). (12)

Sincea!(-)x € Ry([a, b],L(R)) by Theorem 2.3 anBy([a,b], L(R)) C Kg([a, b],L(R)) =
Hy([a,b],L(RR)), it follows from the Fundamental Theorem of Calculus (Theorem 3.3) that
there existds ([Sat(p)xdg(p)) = a'(s)xg(s) malmost everywhere ofa, b] Therefore
givent € [c,d] andx € L(R, X), we havedsKq(t, s)x = ds(Kg(t,S)X) = ds ([0t (p)xdg(p)) =
a'(s)xd (s) for m-almost evens € [a, b]. Then from the invariance of the integral over sets
of mmeasure zero, we obtain

b b
/ dsKq (t, $)x = (K) / at(s)xd(s)ds (13)

Now we will prove thatf"at(s)xg (s)ds= [ a'(s)xdg(s) which, together with (13),
implies (12). Givere > 0, t € [c,d] andx € L(R,X), let 3 and &, be constant gauges
of [a,b] from the definitions off;’a‘(s)xdg(s) and f:at(s)xg (s)ds respectively. Given
& € [a,b], letds3(&) > 0 be such that

9(v) —9(s) =g (E)(v—9)| <e(v—s) (14)

whenevek —83(8) <s< & <v<&+03(&) (see Lemma 4.2) and 1&t&) = min{d;(§); i =
1,2,3}. Then for evend-fined = (&;,s) € TDj5y,), we have

/abo(t(s)xdg(s) _/abat(s)xd(s)dsH <

b o
< /a O(t(s)xdg(s)—;Gt(fi)x[g(S)—g(S—l)] +
|d| [¢]
+ _;a‘(a)X[g(s)—g@—l)] 2 o (&)xg (&)(s —s-1) ||+
ol
+; )xd (& 3511)/: )xd (s)ds| <
o
<8+ZLV )Xl 9(s) —a(si-1) —9(&) (s —s-1)| +& < 2e+V(a')||x][e(b—a),

where we applied the integrability with respecttof at(-)x, the integrability ofa* (-)xd (+)
and (14). The result follows easily. O
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For a proof of the next theorem, see [12], Theorems 3.8 and 3.4.

Theorem 4.5. Let K e COSW([a,b] x [a,b],L(X)). Suppose there is a division-d(s) €
Do such that

sup{SVs ,q(K");te[s_1,s]} <1, i=12,...]d],

where SY, , (K") denotes the semi-variation of the functioftK) in the interval[s _1,t].
Then the followmg properties are equivalent:
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(i) foreveryte [a,b[, the operator - K(t+,t) is invertible, where | denotes the identity

in L(X);

(i) for every he C([a,b],X), the mapping
- / "KL 9)y(S) = h(t), tefab]

admits a unique solutione C([a, b], X).

Let K € C°SW([a,b] x [a,b],L(X)). We say that a functiorR € C°SW([a,b] x
[a,b],L(X)) such thatR(t,s) = Ix, for all s>t, is a resolvent oK, whenevemR satisfies
the equation

t
R(t,s) — |x+/ dK(t,T)oR(T,5) =0, a<s<t<h.
S
The next result can be found in [2] or in [12], Theorem 3.9.

Theorem 4.6. Given Ke C°SW([a, b] x [a,b], L(X)), it there is a division d= (S) € Dja
such that

sup{SVs ,q(K")ite[s_1,s]} <1, i=12,...]d],
then K has resolvent given by the Neumann series.

Theorem 4.7 below and its proof are borrowed from [11], Theorem 3.1.

Theorem 4.7. Let E be a normed space and F be a Banach space such tliaEFRwith
continuous immersion. Let H L(E,F) be such that for every € E, the equation x
Hx = f admits one and only one solution ¥ E. Then the mapping € E — x; € E
is bicontinuous. If in addition the Neumann series H + H2 + H3 4 ... = (1 —H)™!
converges in [F), then it also converges in(E).

Proof. For everyg € F, the equatiory — Hy = g has one and only one solutiog € F
and the mapping € F — yg € F is bicontinuous. Indeed. Sinde C E, the equation
y—Hy = gwith g € F has one and only one solution by hypothesis. But si¢g) C F,
we haveHyy € F. Henceyg = Hyg+9g € F. On the other hand, the mappiyg= F —

g=y—Hy € F is a continuous injection and therefore the closed graph theorem implies its

inverseg € F — yg € F is continuous.
The equatiox— Hx = f, with x, f € E, is equivalent to the equation- Hy = g, with
g=Hf andy=x— f. The mappingf € E+— g=HTf € E is continuous. By the previous

paragraph, the mappingf € F — yy ¢ € E is also continuous. Thus the composed mapping
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f € E— yyt € E is continuous and so is the mappihg E — yq¢ + f € E. The first part
of the theorem follows fronyy ¢ = x¢ — f, thatis,xf = yn¢ + f.

It remains to show the second part. et H)™* =1+H +H?+H3+ ... be convergent
in L(F). SinceH € L(E,F) and the immersiofr C E is continuous, then the series is also
convergentirL(E). Also, if a Neumann series is convergent in sdrmié) (Z not necessarily
complete), then it converges tb—H) L. O

5. The Fredholm Alternative for the Kurzweil-Henstock-
Stieltjes Integral

In this and the next section, we wriBBV,™([a, b] x [a,b],R) instead ofCIBV,™([a, b] x
[a,b],L(R)).

Theorem 5.1. Given ge Sl([a,b],R) differentiable and non-constant in any non-
degenerate subinterval ofa,b] and H e L(Kg4([a,b],R),C([a,b],R)), let a €
égBVbe“([a, b] x [a,b],R) be the corresponding kernel by Theorem 4.2 (i.e.=HHq g).
Suppose H is such that for eachefKy([a,b],R), the linear Fredholm-Stieltjes integral
equation in the sense of the Henstock-Kurzweil integral

x(t)—(K)/a a(t,s)x(s)dg(s) = f(t), t € [abl, (15)

(i.e., the equation x H(x) = f) admits a unique solutionsxc Kgy([a,b],R). Then there
exists a unique kerngl € C§BV,™([a, b] x [a,b],R) and, for each fe K([a,b],R),

0= 10K [pe9f(odys, telab]

Proof. This proof follows the steps of the proof of [11], Theorem 3.2 adapted to the Stieltjes
case.
If in Theorem 4.7 we tak& = Kg4([a,b],R) andF = C([a,b],R), then(I —H)™ ! €

L(Kg([a,b],R)). If we definel —R= (I —H)™%, thenR= H(I —H)~! belongs to
L(Kg([a,b],R),C([a,b],R)) and it can be represented by a kerpet CJBV,™([a,b] x
[a,b],R) (by Theorem 4.2). O

Theorem 5.2. Let g € Sl([a,b],R) be differentiable and non-constant in any non-
degenerate subinterval ¢, b], f € Kg([a,b],R) anda € C§BV,™([a,b] x [a,b],R). Con-
sider the linear integral Fredholm-Henstock-Kurzweil-Stieltjes integral

X0~ (K) [ a(t9x(9dge = ). telab. (16)
a
and its corresponding homogeneous equation

u(t)—(K)/ a(t,9u(s)dgs) =0, telab. (17)

Ja
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Consider also the following integral equations

vo- 7]/ q o)y dio) ~wis), s [ab) 18)

z(s)—/: [/aba(t,o)dz(t)

(i) either for each fe Kgy([a,b],R), equation(16) admits a unique solution xe
Kg([a,b],R) given by

and
dg(o) =0, se[ab]. (19)

Then

X0 =f0-0K) [ ptsf(sdgs, tefab].

(8.b]

where the kerngb 6gBVlj“([a, b] x [a,b],R) is uniquely determined, and for each
w € C([a,b],R), equation(18) admits a unique solutiongy= C([a, b], R);

(i) or equation(17) admits non-trivial solutions in §[a,b],R). In this case, equation
(16) admits a solution if and only if for each solutioreL([a, b],R) of (19),

/ab [(K)/aba(t,s)f(s)dg(s)] dzt) = 0

<resp. /a ’ {(K) /a ba(t,s)u(s)dg(s)] dw(t) :o).

Analogously, equatioii18) admits a solution if and only if for each solutionai
Kg([a,b],R) of (17), we have

/ab {(K) /abq(t,s)u(S)dg(s)} dw(t) = 0.

Proof. Leth(t) = (K)j:’a(t,s)f(s)dg(s) andv=x— f. Thenv(t) = (K)j:a(t,s)x(s)dg(s)
and, by Theorem 4.2, v € C([a,b],R). Thus equation (16) is equivalent to the following

eqguation
b

V=) [ at9y©dgs =n@). telab. (20

a
LetKg: [a,b] x [a,b] — L(R) be such thaKg(t,s)x = [Sa'(o)xdg(o) for everyx € R.
According to Theorem 4.4{4 satisfies condition€Q®) and E\4'). Moreover the mapping

Kg 't € [ab] — Kg(t,-) € S\4([a,b],L(R))

is continuous and we have

b b
| dKst. Vi) = (K) [ at(svis)dg(s)
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Therefore (20) is equivalent to

vit) — /a YKot V() =h(t),  te[ab) 21)

and by the Fredholm Alternative for the Riemann-Stieltjes integral (Theorem 2.11), ei-
ther h € C([a,b],R) and equation (21) admits one and only one solution which implies
that for eachf € Ky([a,b],R), equation (16) admits a unique solution, or the homoge-
neous equation corresponding to (21) (respectively (16)) admits a non-trivial solution. In
the second case, the adjoifitg)” equalsKy. Then equation (16) (respectively equation
(18)) admits a solution (not necessarily kiy([a,b],R)) if and only if for each solution

z < C([a,b],R) of (19), we havef;’ [(K)f;’a(t,s)f(s)dg(s)} dz(t) = 0 (respectively for

each solutioru € K4([a,b],R) of (17), we havef;’ [(K) f;’a(t,s)u(s)dg(s)} dw(t) =0).
The missing part of assertion (i) follows easily from Theorem 5.1. O

6. The Linear Integral Equation of Volterra-Henstock-
Kurzweil-Stieltjes

Theorem 6.1. Let g € Sl([a,b],R) be differentiable and non-constant in any non-
degenerate subinterval ¢&,b], f € Kg([a,b],R) anda € égBVJ”([a, b] x [a,b],R) such
thata(t,s) = 0, for s> t. Then the linear integral equation of Volterra-Stieltjes in the sense
of the Henstock-Kurzweil integral

x(t)—(K)/ a(t,s)x(s)dg(s) = f (t), telab], (22)

at]

admits one and only one solution & K4([a,b],R). Furthermore, the operator & €
L(Kg([a,b],R),C([a,b],R)) given by (Hqgf)(t) = (K)f:a(t,s)f(s)dg(s), for each te
[a,b], is causal as well as the bijection— x; which can be written as

K=~ (K) [ pEINSdus,  telab] (23)

wherep € GgBVJ“([c, d] x [a,b],R) and p(t,s) = 0 for s> t, and the Neumann series
| —Hpg=1+Hag+ (Hag)?+ (Hag)®+... converges in [(K4([a,b],R)).

Proof. Lety =x— f andh(t) = (K)f;’a(t,s)f(s)dg(s). Both functionsy andh are contin-
uous, sincé = Hq g(X(ay f) andy = Ha g(X[ayX) (S€€ Corollary 4.1) witlX 5y f and)ayx
in Kg([a,b],R) andHq g € L(Kg([a,b],R),C([a,b],R)) (see Theorem 4.3). Then equation
(22) is equivalent to the following equation

t

Y(t)—(K)/ a(t,s)y(s)dg(s) =h(t), telabf. (24)

a

Let Kg : [a,b] x [a,b] — R be such thaKq(t,s)x = [>a'(o)xdg0), for everyx € R.
Then by Theorem 4.4, we have

t t
| dko(t.9y(s) = (K) [ o (ey(s)g(s).
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Thus equation (24) is equivalent to the following equation

_ /tdsKg(t,s)y(s)—h(t), telab. (25)

By Theorem 4.4Kq € C°BVY([a,b] x [a,b],R) and sincea(t,s) = 0 for s > t, then
Kg(t,s) = 0 for s>t. Thus, according to Theorem 4.5, in order to prove that given
C([a,b],R), equation (25) has one and only one solutygpre C([a, b],R) and the operator
h— yy, is causal, it is enough to show that

(i) there exists a divisiod = (s)) € Dj51, such that SUPSVs , ((Kg)');t € [s-1,5]} <
1,i=12,...,/d.

(i) for eacht € [a, b, the operatot — Ky(t+,1) is invertible.
Proof of (ii). By the continuity ofy, given¢ € [a,b] ande > 0 withe < 1/2VY(a), there
existsd(&) > 0 such thatg(t) — g(§)| < g, forallt € [a,b] withO < |t —&| < 8(§)/2. Then

IKq(t+0,t)x]| = H/ttwa(t +0,9xdg9)|| <VU(a)x gt +0) —g(t)|

which tends to zero as goes to zero. It follows thaty(t+,t) is invertible.

Proof of (i). Let us consider the gaugef [a, b| defined as above and lét= (§;,s) €
TDy,p be &fine. Giveni € {1,2,...,|d|} andt € [s_1,s], letd = (r) be a division of
[S—1,t]. Then

Z[(Kg)t(rj)—(Kg) (r' =] =

J

o)xjdg(o)

[ aomdgo

X.
VY@l g(t) ~ als-0)] < V¥(@)gle < .
HenceBV , ((Kg)') < 1/2 and (i) follows.
Finally, the assertion about the Neumann series for the resolvent of equation (25) in

L(C([a,b],IR)) follows from Theorem 4.6. Besides, the operaigy given by (Fg,y) (t) =

JadsKg(t,)y(s) is causal as well afF,)". Therefore(l — FKg)*1 is also causal. By The-
orem 4.7, the same applies to the resolvent of equation (A5)Kg([a,b],R)). Thus from
the fact thafk, = Hy g (See Theorems 4.4 and 4.3), the operatoH, g = (I —Hq g) * is
causal. O

Remark 6.1. Given ge SL([a, b, R) differentiable and non-constant in any non-degenerate
subinterval offa, b}, let I%([a, b], X)a be the space, endowed with the Alexiewicz norm, of
the equivalence classes of functionsd, b] — X which are improper Riemann-Stieltjes in-
tegrable with respect to g and have a finite number of singularities. Alsoy |gta, b], X)a

be the space, endowed with the Alexiewicz norm, of all equivalence classes of functions
f : [a,b] — X which are Bochner integrable with respect to g (i.e., in the Stieltjes sense)
with finite integral. Then Theorems 5.2 and 6.1 hold f@([& b], X)a or Lyig([a,b],X)a
instead oK 4([a, b], X).
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