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Abstract

This paper is concerned with systems of impulsive second order delay differential equations. We prove
that unstable systems can be stabilized by imposition of impulsive controls. The main tools used are
Lyapunov functionals, stability theory and control by impulses.
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1. Introduction

The theory of impulsive differential equations has become an important part of differential
equations. In recent years, significant progress has been made in the qualitative theory of
differential equations. There are recent results dealing with the stability of solutions; for instance,
see [1–3,5,6]. Impulses can make unstable systems stable or, otherwise, stable systems can
become unstable after impulse effects. The problem of stabilizing the solutions by imposing
proper impulse controls has been used in many fields such as physics, pharmacokinetics,
biotechnology, economics, chemical technology, population dynamics.

In [1], we proved that the zero solution of certain second order retarded differential equations
can be made exponentially continuous with respect to initial data by impulses on some interval
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[t0, T ). In the present paper, we deal with a more general equation and, by means of Lyapunov
functionals, we establish sufficient conditions for the stability of solutions by imposing proper
impulse controls. Our results also encompass [5].

This paper is organized as follows. In Section 2, we define exponential stabilization by
impulses and exponential stabilization by periodic impulses. Section 3 is devoted to the main
results. In Section 4, we give examples.

2. Preliminaries

Given a continuous function z(t) : R → R, let z′(t) denote its right derivative and
z′′(t) = (z′(t))′. If z(t) is piecewise continuous, then z(s−) and z(s+) denote, respectively,
its left and right limits as t tends to s.

Let a constant τ > 0 represent an upper bound on the time delay of our system. By
PC([−τ, 0],Rn) we mean the Banach space of piecewise right continuous functions ψ taking
[−τ, 0] into R

n with norm given by ‖ψ‖ = sup−r≤s≤0 |ψ(s)|, where | · | denotes the norm in
R

n . If x ∈ PC([t0 − τ, σ ],Rn), where t0 ∈ R, σ ≥ t0, then for each t ∈ [t0, σ ] we define
xt ∈ PC([−τ, 0],Rn) by xt (s) = x(t + s) for −τ ≤ s ≤ 0.

We consider the following equation⎧⎨
⎩

x ′′(t)+ f (t, x(t), x ′(t))+ g(t, x(t), x(t − τ )) = 0, t ≥ t0, t 
= tk, k = 1, 2, . . .
xt0 = ϕ

x ′(t0) = y0

(1)

where {tk}∞k=0 is a monotone increasing unbounded sequence of real numbers, f, g : [t0,∞) ×
R×R → R are continuous functions such that f (t, 0, 0) = g(t, 0, 0) = 0 and ϕ, ϕ′ : [−τ, 0] →
R have at most a finite number of discontinuity points all of them being of the first kind, and are
right continuous at these points.

We also consider the impulses at times tk , k = 1, 2, . . .,

x(tk) = Ik(x(t
−
k )) and x ′(tk) = Jk(x

′(t−k )), (2)

where Ik , Jk : R → R are continuous and Ik(0) = Jk(0) = 0, k ∈ N.
Throughout this paper we assume that the following hypotheses hold:

(H1) There exists a constant F > 0 such that for all t ≥ t0 and all u, v in R,

| f (t, u, v)| ≤ F |u|.
(H2) There exists a constant G > 0 such that for all t ≥ t0 and all u, v in R,

|g(t, u, v)| ≤ G |v|.
Now we define a solution of the impulsive problem (1) and (2).

Definition 2.1. A function x : [t0 − τ, t0 + α) → R, α > 0, is a solution of problem (1) and (2)
through (t0, ϕ, y0) ∈ R × PC([−τ, 0],R)× R if only if

(i) x(t) and x ′(t) are continuous on [t0, t0 + α) \ {tk; k ∈ N}, admit lateral limits at tk , k ∈ N,
and are right continuous at tk , k ∈ N;

(ii) x(t) satisfies (1);
(iii) for each k ∈ N, x(tk) and x ′(tk) fulfill (2).

We denote by x(t) = x(t; t0, ϕ, y0) the solution of (1) and (2) starting from (t0, ϕ, y0).
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Remark 2.2. Defining y(t) = x ′(t), the non-impulsive equation in (1) is transformed into the
following system{

x ′(t) = y(t)
y ′(t) = −g(t, x(t), x(t − τ ))− f (t, x(t), y(t)), t ≥ t0.

(3)

If we consider the function H : [t0,∞)× R
3 → R given by

H (t, x0, x1, x2) = g(t, x0, x1)+ f (t, x0, x2),

then for all (t, ψ) ∈ [t0,∞)× PC([−τ, 0],R2), ψ = (ψ1, ψ2), we can define

h(t, ψ) = (ψ2(0),−H (t, ψ1(0), ψ1(−τ ), ψ2(0))).

By hypotheses (H1), (H2), h : [t0,∞)× PC([−τ, 0],R2) → R
2 is continuous and satisfies

|h(t, ψ)| ≤ (1 + F + G)‖ψ‖.
By Theorem 3.5 in [4], there exists a (local) solution of (1) and (2) and any such solution can be
continued to [t0 − τ,∞).

Notice that conditions g(t, 0, 0) = f (t, 0, 0) = 0 and Ik(0) = Jk(0) = 0 imply that x ≡ 0 is
a solution of (1) and (2) with ϕ ≡ 0 and y0 = 0.

Next we define the meaning of exponential stabilization by impulses of the zero solution of
(1).

Definition 2.3. The zero solution of problem (1) is said to be exponentially stabilized by
impulses, if there exist α > 0, a sequence {tk}k∈N with

t0 < t1 < t2 < · · · < tk −→ ∞ as k −→ ∞,

and sequences of continuous functions, {Ik} and {Jk}, such that for all ε > 0, there is δ > 0 such
that if a solution x(t) of (1) and (2) fulfills√

‖ϕ‖2 + y0
2 ≤ δ, (4)

then √
x2(t)+ x ′2(t) ≤ ε exp[−α(t − t0)], t ≥ t0. (5)

In particular, we can consider periodic impulses.

Definition 2.4. The zero solution of problem (1) is said to be exponentially stabilized by periodic
impulses if there are α > 0, a sequence {tk}k∈N with

t0 < t1 < t2 < · · · < tk −→ ∞ as k −→ ∞,

and tk − tk−1 = c > 0, and sequences of functions, {Ik} and {Jk} such that

I1(u) = · · · = Ik(u) = . . . , k = 1, 2, . . . ,∀ u ∈ R

J1(u) = · · · = Jk(u) = . . . , k = 1, 2, . . . ,∀ u ∈ R

such that for all ε > 0, there is δ > 0 such that if a solution x(t; t0, ϕ, y0) of (1) and (2) fulfills
(4), then (5) holds.
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3. Main results

Consider the following equation

x ′′(t)+ ax(t − τ )+ bx(t) = 0, t ≥ t0. (6)

We will prove that (6) is unstable for suitable coefficients a, b ∈ R by means of its characteristic
equation

λ2 + ae−τλ + b = 0. (7)

The fact that (6) is unstable follows from the existence of a characteristic root with positive real
part. Taking a, b such that 1 + ae−τ + b = 0 one gets that λ = 1 is a characteristic root of (7).
Therefore (6) is unstable. Notice that f (t, u, v) = bu and g(t, u, v) = av satisfy (H1) and (H2).

In what follows, we prove that the zero solution of the more general problem (1) can be
exponentially stabilized by impulses.

Theorem 3.1. Suppose (H1), (H2) hold and

Gτ < exp[−βτ ], (8)

where β = max{1, F + G}. Then the zero solution of problem (1) can be exponentially stabilized
by impulses.

Proof. Suppose (8) holds. Then there exist α > 0 and � ≥ τ such that

Gτ ≤ exp[−α(�+ τ )] exp[−β�]. (9)

Let α and � be as in (9). Thus we can choose a sequence {tk}k∈N such that t0 < t1 < · · · <
tk < · · · and limk→∞ tk = ∞, with τ ≤ tk − tk−1 ≤ �. Let

Ik(u) = dku, Jk(v) = dkv, k = 1, 2, . . . , (10)

where

dk = pk − Gτ

and

pk = exp[−α(tk+1 − tk + τ )] exp[−β(tk+1 − tk)].
Then dk is a non-negative real number, since pk ≥ Gτ by (9).

For every ε > 0, let

δ = ε√
2(1 + Gτ )

exp[−α(t1 − t0)] exp[−β(t1 − t0)]. (11)

We will show that, for each solution x(t) = x(t; t0, ϕ, y0) of (1) and (2) such that√
‖ϕ‖2 + y0

2 ≤ δ,

we have√
x2(t)+ x ′2(t) ≤ ε exp[−α(t − t0)], t ≥ t0.
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Consider the Lyapunov functional

V (ψ) = |ψ1(0)| + |ψ2(0)| + G
∫ 0

−τ
|ψ1(s)|ds,

for ψ ∈ PC([−τ, 0],R2), ψ(t) = (ψ1(t), ψ2(t)).
Given any solution zt = (xt , yt ) of (3) taking ψ = zt and recalling that y = x ′, we find

V (t) = V (zt ) = |x(t)| + |x ′(t)| + G
∫ 0

−τ
|xt (s)|ds.

We can easily see that√
x2(t)+ x ′2(t) ≤ |x(t)| + |x ′(t)| ≤

√
2 [x2(t)+ x ′2(t)].

Also V (t) satisfies

(i) V (t) ≥ |x(t)| + |x ′(t)|.
(ii) V (t) ≤ (1 + Gτ ) (‖xt‖ + |x ′(t)|), since

V (t) ≤ |x(t)| + |x ′(t)| + ‖xt‖G
∫ 0

−τ
ds ≤ (1 + Gτ )(‖xt‖ + |x ′(t)|).

(iii) V ′(t) ≤ βV (t), for all t ∈ (t0, t1), where V ′(t) denotes the right upper derivative of V (t)
along the solution of (1) and (2). Indeed, we have

V ′(t) = x ′(t)sgn[x(t)] + x ′′(t)sgn[x ′(t)] + G|x(t)| − G|x(t − τ )|
= x ′(t)sgn[x(t)] + [−g(t, x(t), x(t − τ ))− f (t, x(t), x ′(t))

]
sgn[x ′(t)]

+ G|x(t)| − G|x(t − τ )|
≤ |x ′(t)| + |g(t, x(t), x(t − τ ))| + | f (t, x(t), x ′(t))| + G|x(t)| − G|x(t − τ )|
≤ |x ′(t)| + G|x(t − τ )| + F |x(t)| + G|x(t)| − G|x(t − τ )|
= |x ′(t)| + (F + G)|x(t)|
≤ β

(|x(t)| + |x ′(t)|) ≤ βV (t).

Solving V ′(t) ≤ βV (t), we obtain

V (t) ≤ V (t0) exp[β(t − t0)], for all t ∈ (t0, t1). (12)

Therefore

|x(t)| + |x ′(t)| ≤ V (t) ≤ V (t0) exp[β(t − t0)] ≤ V (t0) exp[β(t1 − t0)]
≤ (1 + Gτ )(‖xt0‖ + |x ′(t0)|) exp[β(t1 − t0)]
≤ (1 + Gτ )

√
2δ exp[β(t1 − t0)]

= ε exp[−α(t1 − t0)]
≤ ε exp[−α(t − t0)]

and hence√
x2(t)+ x ′2(t) ≤ |x(t)| + |x ′(t)| ≤ ε exp[−α(t − t0)], t ∈ (t0, t1). (13)

But from the right continuity of x(t) and x ′(t), (13) also holds on [t0, t1), that is,√
x2(t)+ x ′2(t) ≤ ε exp[−α(t − t0)], t ∈ [t0, t1). (14)
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Now, we repeat the procedure above for t ∈ (t1, t2). Properties (i) and (iii) still hold for
t ∈ (t1, t2). Like (12), by the definition of p1 and knowing that τ ≤ t1 − t0, we obtain

V (t) ≤ V (t+1 ) exp[β(t2 − t1)]

=
(

|x(t+1 )| + |x ′(t+1 )| + G
∫ 0

−τ
|x(t1 + s)|ds

)
exp[β(t2 − t1)]

=
(

|x(t1)| + |x ′(t1)| + G
∫ t1

t1−τ
|x(s)|ds

)
exp[β(t2 − t1)]

=
(

|I1(x(t1
−))| + |J1(x

′(t1−))| + G
∫ t1

t1−τ
|x(s)|ds

)
exp[β(t2 − t1)]

=
(

d1[|x(t1−)| + |x ′(t1−)|] + G
∫ t1

t1−τ
|x(s)|ds

)
exp[β(t2 − t1)]

≤ d1 sup
t1−τ≤t≤t1

[|x(t)| + |x ′(t)|] exp[β(t2 − t1)] + sup
t1−τ≤t≤t1

|x(t)|Gτ exp[β(t2 − t1)]
≤ (d1 + Gτ ) sup

t1−τ≤t≤t1
[|x(t)| + |x ′(t)|] exp[β(t2 − t1)]

≤ (d1 + Gτ )ε exp[−α(t1 − t0 − τ )] exp[β(t2 − t1)]
= p1ε exp[−α(t1 − t0 − τ )] exp[β(t2 − t1)]
= ε exp[−α(t2 − t0)] ≤ ε exp[−α(t − t0)].

Thus for t ∈ (t1, t2)√
x2(t)+ x ′2(t) ≤ |x(t)| + |x ′(t)| ≤ V (t) ≤ ε exp[−α(t − t0)].

Hence√
x2(t)+ x ′2(t) ≤ ε exp[−α(t − t0)], t ∈ (t1, t2). (15)

In fact we have from the right continuity of x(t) and x ′(t) that (15) holds for t ∈ [t1, t2), that is,√
x2(t)+ x ′2(t) ≤ ε exp[−α(t − t0)], t ∈ [t1, t2). (16)

Therefore by (14) and (16)√
x2(t)+ x ′2(t) ≤ ε exp[−α(t − t0)], t ∈ [t0, t2). (17)

In this way, it follows that for k ∈ N,√
x2(t)+ x ′2(t) ≤ ε exp[−α(t − t0)], t ∈ [t0, tk), k = 1, 2, . . . .

Hence√
x2(t)+ x ′2(t) ≤ ε exp[−α(t − t0)], t ≥ t0

and the proof is complete. �

Corollary 3.2. Suppose that the hypotheses in Theorem 3.1 hold. Then the zero solution of
problem (1) can be exponentially stabilized by periodic impulses.
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Proof. Choose a sequence {tk}k∈N such that t0 < t1 < · · · < tk < · · · and limk→∞ tk = ∞, with
tk − tk−1 = �. Let

Ik(u) = du, Jk(v) = dv, k = 1, 2, . . . , (18)

where

d = p − Gτ and p = exp[−α(�+ τ )] exp[−β�].
The proof follows as in Theorem 3.1. �

The procedure in Theorem 3.1 can be specialized to prove the exponential stabilization for the
second order differential equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x ′′(t)+

N∑
i=1

ai (t) x(t − τi )+ f (t, x(t), x ′(t)) = 0, t ≥ t0, t 
= tk,

xt0(s) = ϕ(s), −τN ≤ s ≤ 0,
x ′(t0) = y0,

(19)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ′′(t)+
N∑

i=1

∫ t

t−τi

bi (t − u)x(u)du + f (t, x(t), x ′(t)) = 0, t ≥ t0, t 
= tk,

xt0(s) = ϕ(s), −τN ≤ s ≤ 0,
x ′(t0) = y0,

(20)

under the following hypotheses: 0 < τ1 < τ2 < · · · < τN , ai : [t0,∞) → R, i = 1, . . . , N ,
are piecewise continuous functions, bi : [0, τi ] → R, i = 1, . . . , N , are Lebesgue integrable, f
is continuous, f (t, 0, 0) = 0, for all t ≥ t0 and (H1) holds. Conditions (21) and (23) below are
also assumed.

We also consider the impulses at times tk , k = 1, 2, . . ., given by (2).
In [1], we restricted ourselves to an interval [t0 − τN , T ], for a certain T . Now we get the

existence of solutions for (19)-(2) and (20)-(2) on [t0 − τN ,∞) by taking

H (t, x0, x1, . . . , xN , xN+1) = −
N∑

i=1

ai (t) xi − f (t, x0, xN+1)

for problem (19) and

H (t, x0, x1, . . . , xN , xN+1) =
N∑

i=1

∫ t+τi

t
bi (t − s + τi )xi du − f (t, x0, xN+1)

for (20) in Remark 2.2. Then the process of exponential stabilization of the zero solution of (19)
and (20) follows the steps of the proof of Theorem 3.1 with the Lyapunov functionals

V (t) = |x(t)| + |x ′(t)| +
N∑

i=1

∫ t

t−τi

|ai (s + τi )||x(s)|ds

and

V (t) = |x(t)| + |x ′(t)| +
N∑

i=1

∫ t

t−τi

[∫ t

u
|bi (u − s + τi )||x(s)|ds

]
du.
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In what follows we formalize such results.

Theorem 3.3. Suppose there exists a positive constant A such that

|ai (t)| ≤ A, i = 1, . . . , N (21)

and (H1) holds. If

Aτ < exp[−βτ ], (22)

where τ = ∑N
i=1 τi and β = max{1, AN + F}, then the zero solution of problem (19) can be

exponentially stabilized by impulses.

Theorem 3.4. Suppose there exists a positive constant B such that∫ τi

0
|bi (s)|ds ≤ B, i = 1, . . . , N (23)

and (H1) holds. If

Bτ < exp[−βτ ], (24)

where τ = ∑N
i=1 τi and β = max{1, B N + F}, then the zero solution of problem (20) can be

exponentially stabilized by impulses.

Remark 3.5. Also following the steps of the proof of Corollary 3.2, one can prove that the zero
solution of problems (19) and (20) can be exponentially stabilized by periodic impulses.

4. Examples

Example 4.1. Let us consider Eq. (6) again. Taking F = |b|, G = |a|, β = max{1, F + G} and
� = τ , suppose

Gτ exp[βτ ] < 1.

In this way, one can choose α ≥ 0 in order to obtain

Gτ < exp[−2ατ ] exp[−βτ ].
Therefore

Gτ < exp[−βτ ].
We can choose the impulses at the instants tk , with tk − tk−1 = � = τ , given by

Ik(x(t
−
k )) = dx(t−k ), Jk(x

′(t−k )) = dx ′(t−k ), k = 1, 2, . . . ,

where d = exp[−(2α + β)τ ] − Gτ . Then the hypotheses in Corollary 3.2 are satisfied and,
therefore, problem (6) can be exponentially stabilized by periodic impulses.

Example 4.2. Consider the equation

x ′′(t)− 0.00324x(t − 2)− 0.00512x(t − 1) = 0, t ≥ 0 (25)

whose characteristic equation is

λ2 − 0.00324e−2λ − 0.00512e−λ = 0. (26)
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By using the software Maple, one can find a characteristic root with positive real part. Hence
the non-impulsive equation (25) is unstable.

Consider A = 0.00512, � = τ = τ1 + τ2 = 3 and α = 1
9 . Then β = max{1, AN} = 1 and

we can also verify that

Aτ < exp[−α(�+ τ )] exp[−β�] < exp[−β�] = exp[−�].
We can choose the impulses at the instants tk , with tk − tk−1 = �, given by

Ik(x(t
−
k )) = dx(t−k ), Jk(x

′(t−k )) = dx ′(t−k ), k = 1, 2, . . . ,

where d = exp(−3.66667) − 0.01536, then the hypotheses in Theorem 3.3 are satisfied and
hence problem (25) can be exponentially stabilized by periodic impulses.
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