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Abstract

We consider a certain type of second-order neutral delay differential systems and we
establish two results concerning the oscillation of solutions after the system undergoes
controlled abrupt perturbations (called impulses). As a matter of fact, some particular
non-impulsive cases of the system are oscillatory already. Thus, we are interested in
finding adequate impulse controls under which our system remains oscillatory.
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1 Introduction

Because systems subject to impulse effects may undergo unusual phenomena such as
“beating”, “dying”, “merging”, “noncontinuation of solutions”, etc, and because they are
widely used to model real-world problems in science and technology, the theory of impulsive
differential systems has been attracting the attention of many mathematicians and the in-
terest in the subject is still growing. In the last years, the action of impulses on functional
differential systems has been intensively investigated.

In this paper, we are mainly concerned with oscillating systems which remain oscillating
after being perturbed by instantaneous changes of state. We consider a certain type of
second-order neutral delay differential system and give sufficient conditions governing the
impulse operators acting on the system so that its solutions are oscillatory.

An important application of second-order differential equations with impulses appears
in impact theory. An impact is an interaction of bodies which happens in a short period
of time and can be considered as an impulse. Billiard-type systems, for instance, can be
modelled by second-order differential systems with impulses acting on the first derivatives
of the solutions. Indeed, the positions of the colliding balls do not change at the moments
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of impact (impulses), but their velocities gain finite increments. For models describing
viscoelastic bodies colliding, systems with delay and impulses are more appropriate. See
[11].

An application of second-order neutral delay differential equations appears, for instance,
in problems dealing with vibrating masses attached to an elastic. They also appear, as the
Euler equation, in some vibrational problems. See [5, 6, 13, 15, 17, 24], for instance.

In recent years, there has been an increasing interest on the oscillatory behavior of second
order nonlinear or quasilinear delay differential equations with impulse action. We refer to
the papers [19, 20, 27], for example.

When considering a system subject to impulse effects, one expects that either the impulses
act as a control and cease the oscillation of the system, or the impulse operators are somehow
“under control” so that the system remains oscillating. It is known, for instance, that
impulses can make oscillating systems become non-oscillating and, likewise, non-oscillating
systems can become oscillating by the imposition of proper impulse controls. In [7], the
authors adapt the techniques of [10] and [26] and give conditions so that the solutions of
certain second-order delay differential equation oscillates. See also [4, 25, 28, 30, 33, 35, 36].

In the present paper, we consider the second-order neutral delay differential equation
[
r(t) (x(t) + p(t)x(t− τ))′

]′
+ f(t, x(t), x(t− δ)) = 0, t ≥ t0, t 6= tk,

x(tk) = Ik(x(t
−
k )), x′(tk) = Jk(x

′(t−k )), k = 1, 2, . . . ,

x(t) = φ(t), t0 − σ ≤ t ≤ t0,

(1.1)

where p ∈ PC1([t0, +∞[, R+), r(t) is a positive continuous function defined in [t0,+∞[, δ
and τ are non-negative constants, 0 ≤ t0 < t1 < . . . < tk < . . . with lim

k→+∞
tk = +∞ and

tk+1−tk > σ, where σ := max{δ, τ}, and φ, φ ′ : [t0−σ, t0] → R have at most a finite number
of discontinuities of the first kind and are right continuous at these points. Then we state
sufficient conditions so that the solutions of system (1.1) are oscillatory.

In fact, it is known that some particular cases of (1.1) oscillate without the presence of
impulses. See [16, 25, 35] for instance. Our main results, namely Theorems 2.1 and 2.2, give
conditions under which system (1.1) remains oscillating. In order to obtain such result, we
employ some ideas from [7] and specially from [16].

We note that when right continuity is replaced by left continuity, the results of the present
paper remain valid (with obvious modifications). For left continuous functions and in the
absence of impulses, see the results from [16] and [35], for instance. In the absence of delay,
see [21] and [31].

In [26], the authors state oscillation results for the impulsive delay differential system
(r(t)(x′(t))σ)′ + f(t, x(t), x(t− δ)) = 0, t ≥ t0, t 6= tk,

x(tk) = Ik(x(t
−
k )), x′(tk) = Jk(x

′(t−k )), k = 1, 2, . . . ,

x(t+0 ) = x0, x′(t+0 ) = x′(t0),

where 0 < σ = p/q, with p and q being odd integers. See also [19] and [20].
For neutral differential systems, we mention [32], where the authors consider the non-

impulsive system[
r(t) |(x(t) + p(t)x(σ(t)))′|α−1

(x(t) + p(t)x(σ(t)))′
]′

+ q(t)f(x(σ(t))) = 0, t ≥ t0,
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where α is a positive constant. An oscillation result is proved for this system. When α = 1
and σ(t) = t − σ, where σ := max{δ, τ} as in (1.1), our results generalize the result from
[32].

In the case of neutral difference systems with impulses, we mention [27], where the author
states some criteria for the oscillation of the solutions of the discrete system

∆
(
rn−1|∆(xn−1 − xn−τ−1)|α−1∆(xn−1 − xn−τ−1)

)
+ f(n, xn, xn−1) = 0

subject to the impulse action

rnk
|∆(xnk

− xnk−τ )|α−1∆(xnk
− xnk−τ ) =

= Mk

(
rnk−1|∆(xnk−1 − xnk−τ−1)|α−1∆(xnk−1 − xnk−τ−1)

)
,

where ∆xn = xn+1−xn, α is a positive constant and the impulse operator Mk fulfills certain
conditions, k, τ ∈ N. Thus, up to now, it seems that no result concerning oscillation of
solutions for piecewise continuous neutral differential systems subject to impulses have been
found yet. Hence our result is a contribution in this direction.

Furthermore, we assume that p(t) in system (1.1) takes any positive value improving the
usual assumption that 0 ≤ p(t) ≤ 1.

2 Main results

By w ∈ PC1([T, +∞[, R+) we mean the set of functions w ∈ C1([λk, λk+1[, R+), for
each k = 0, 1, 2, ..., where {λk}k≥1 is a sequence of positive real numbers, with λ0 = T , and
the limits w(λ−k ) and w′(λ−k ) exist, for all k = 0, 1, 2, . . ..

Consider the second-order neutral delay differential equation
[r(t)(x(t) + p(t)x(t− τ))′]′ + f(t, x(t), x(t− δ)) = 0, t ≥ t0, t 6= tk,

x(tk) = Ik(x(t
−
k )), x′(tk) = Jk(x

′(t−k )), k = 1, 2, . . . ,

x(t) = φ(t), t0 − σ ≤ t ≤ t0,

(2.1)

where δ and τ are positive real numbers, σ := max{δ, τ}, 0 ≤ t0 < t1 < . . . < tk < . . .
with lim

k→+∞
tk = +∞ and tk+1 − tk > σ, for all k ∈ N, p ∈ PC1([t0, +∞[, R+) and φ, φ ′ :

[t0−σ, t0] → R have at most a finite number of discontinuities of the first kind and are right
continuous at these points.

We will state oscillation results for (2.1) in two situations which we will refer to as case
A and case B.

2.1 Case A

Throughout this section we assume that
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(H1) f : [t0 − σ,+∞[×R× R → R is continuous, uf(t, u, v) > 0 for all uv > 0,

f(t, u, v)

ϕ(v)
≥ m(t),

for all v 6= 0, where m(t) is continuous on [t0 − σ,+∞[, m(t) ≥ 0, and xϕ(x) > 0, for
all x 6= 0 and ϕ′(x) ≥ 0;

(H2) Ik, Jk : R → R are continuous, with Ik(0) = Jk(0) = 0, and there exist positive
numbers ak, bk and ck such that

ak ≤
Ik(x)

x
≤ bk, Jk(x) = ckx, x 6= 0, k = 1, 2, . . . ,

for all k ∈ N.

(H3) r is a positive continuous function on [t0,+∞[ and

lim
t→+∞

∫ t

t0

(
1

r(s)

∏
t0<tk<s

ck
max{bk, ck}

)
ds = +∞ .

(H4) p(t) and p′(t) are right continuous on ]tk, tk+1[ with left lateral limits p(t−k ) =
1

ck
p(tk),

and p′(t−k ) =
1

ck
p′(tk), for each k ∈ N.

We start by presenting a lemma which is borrowed from [14] (see Theorem 1.4.1 there)
replacing the left continuity by the right continuity of g(t) and g′(t) at tk, for all k ∈ N.

Lemma 2.1 Suppose

(i) the sequence {tk}k∈N satisfies 0 ≤ t0 < t1 < . . . < tk < . . ., with lim
k→+∞

tk = +∞.

(ii) g, g′ : R+ → R are continuous on R+ \ {tk : k ∈ N}, there exist the lateral limits
g(t−k ), g′(t−k ), g(t+k ), g′(t+k ) and g(t+k ) = g(tk), k = 1, 2, . . ..

(iii) for k = 1, 2, . . . and t ≥ t0, we have

g′(t) ≤ p(t) g(t) + q(t), t 6= tk, (2.2)

g(tk) ≤ αkg(t
−
k ) + βk, (2.3)

where p, q ∈ C(R+,R), αk and βk are real constants with αk ≥ 0.

Then the following inequality holds

g(t) ≤ g(t0)
∏

t0<tk<t

αkexp

(∫ t

t0

p(s)ds

)
+

∫ t

t0

∏
s<tk<t

αk exp

(∫ t

s

p(u)du

)
q(s)ds

+
∑

t0<tk<t

∏
tk<tj<t

αj exp

(∫ t

tk

p(s)ds

)
βk, t ≥ t0.

(2.4)
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Remark 2.1 If the inequalities (2.2) and (2.3) are reversed, then the inequality (2.4) is also
reversed.

For the sake of convenient notation, let z(t) = x(t) + p(t)x(t− τ).

Lemma 2.2 Suppose (H1) to (H4) are fulfilled, ak, ck ≥ 1, k ∈ N, and there exists T ≥ t0
such that x(t) > 0 for t ≥ T − τ − δ. Then z(t) > 0 on the interval [T,+∞[ and z′(t) ≥ 0
for t ∈ [tk, tk+1[, where tk ≥ T and k ∈ N. Furthermore, z(t) is non-decreasing on [T, +∞[.

Proof. Suppose x(t) > 0, for t ≥ T − τ − δ. Then x(t − τ) > 0 for all t ≥ T − δ. In
particular x(t− τ) > 0 for all t ≥ T and hence

z(t) = x(t) + p(t)x(t− τ) > 0, t ≥ T ≥ t0.

Now we are going to prove that z′(t−k ) ≥ 0, tk ≥ T and k ∈ N. Suppose the opposite,
that is, there exists tj0 ≥ T such that z′(t−j0) < 0. Let z′(t−j0) = −α, with α > 0. Since
tk+1 − tk > σ ≥ τ for each k ∈ N, we have

tk < tk+1 − τ < tk+1 (2.5)

for all k ∈ N. Thus, from the continuity of x and x′ on [tk−1, tk[, inequality (2.5), assumptions
(H2) and (H4), and equation (2.1), we have

z′(tk) = x′(tk) + p′(tk)x(tk − τ) + p(tk)x
′(tk − τ)

= Jk(x
′(t−k )) + ckp

′(t−k )x(t−k − τ) + ckp(t
−
k )x′(t−k − τ)

= ckx
′(t−k ) + ckp

′(t−k )x(t−k − τ) + ckp(t
−
k )x′(t−k − τ)

= ckz
′(t−k ),

that is, z′(tk) = ckz
′(t−k ) for all k ∈ N.

On the other hand, if t ∈ ]tk, tk+1[, k ∈ N and tk > T , it follows by (H1) that

[r(t)z′(t)]
′
= −f(t, x(t), x(t− δ)) ≤ −m(t)ϕ(x(t− δ)) ≤ 0.

Hence r(t)z′(t) is non-increasing on each interval [tk, tk+1[, k ∈ N, such that tk > T .
We now consider the impulsive differential inequality

(r(t)z′(t))′ ≤ 0, t > tj0 , t 6= tk, k = j0 + 1, j0 + 2, . . . ,

z′(tk) = ckz
′(t−k ), k = j0 + 1, j0 + 2, . . . .

Let g(t) = r(t)z′(t). Then

g′(t) ≤ 0, t > tj0 , t 6= tk, k = j0 + 1, j0 + 2, . . . ,

g(tk) = ckg(t
−
k ), k = j0 + 1, j0 + 2, . . . .

By Lemma 2.1, we have

g(t) ≤ g(t−j0)
∏

tj0<tk<t

ck,
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that is,

z′(t) ≤
(
r(tj0)

r(t)

)
z′(t−j0)

∏
tj0<tk<t

ck. (2.6)

For k = j0 + 1, j0 + 2, ..., we also have

z(tk) = x(tk) + p(tk)x(tk − τ)

= Ik(x(t
−
k )) + ckp(t

−
k )x(t−k − τ)

≤ bkx(t
−
k ) + ckp(t

−
k )x(t−k − τ)

≤ max{bk, ck}z(t−k ).

By (3.2) and since z(tk) ≤ max{bk, ck}z(t−k ), k = j0 +1, j0 +2, . . ., it follows from Lemma
2.1 that

z(t) ≤ z(t−j0)
∏

tj0<tk<t

max{bk, ck}+

∫ t

tj0

∏
s<tk<t

max{bk, ck}

(r(tj0)
r(s)

)
z′(t−j0)

∏
tj0<tk<s

ck

 ds

=
∏

tj0<tk<t

max{bk, ck}

z(t−j0)− αr(tj0)

∫ t

tj0

 1

r(s)

∏
tj0<tk<s

ck
max{bk, ck}

 ds

 .
And since z(t) > 0 for t ≥ T , the last inequality contradicts (H3). Therefore z′(t−k ) ≥ 0 for
all tk, tk ≥ T .

Since r(t)z′(t) is non-increasing on [tk, tk+1[, it is clear that

z′(t) ≥
r(t−k+1)

r(t)
z′(t−k+1) ≥ 0,

for t ∈ [tk, tk+1[, tk ≥ T . Finally, take any tk, k ∈ N, such that tk > T . Then

z(tk) = x(tk) + p(tk)x(tk − τ)

= Ik(x(t
−
k )) + ckp(t

−
k )x(t−k − τ)

≥ akx(t
−
k ) + ckp(t

−
k )x(t−k − τ)

≥ min{ak, ck}z(t−k )

≥ z(t−k ).

Hence z(t) is non-decreasing on [T, +∞[ and the proof is complete.

Remark 2.2 When x(t) is eventually negative and ak, ck ≥ 1, k ∈ N, then under hypotheses
(H1) to (H4) one can prove similarly that z(t) < 0 on the interval [T, +∞[ and z′(t) ≤ 0 for
t ∈ [tk, tk+1[, where tk ≥ T . In particular, z(t) is non-increasing on [T, +∞[.

Now we present an auxiliary function whose definition is borrowed from [16] and which
will be used in the proofs of the following results.
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Let Φ ∈ C2([t0, +∞), R+) be given and define h ∈ C([t0, +∞[, R) by

h(t) = − Φ′(t)

2Φ(t)
.

Now, define the function ψ by

ψ(t) = Φ(t)
{
m(t)[1− p(t− δ)] + r(t− δ)h2(t)ck − [r(t− δ)h(t)ck]

′}
for each tk ≤ t < tk+1, k = 1, 2, 3, ....

Proposition 2.1 Suppose (H1) to (H4) are fulfilled, ak, ck ≥ 1, k ∈ N and ϕ(v) = v in
assumption (H1). If equation (2.1) is nonoscillatory, then there exist a number k0 ∈ N and
a function w ∈ PC1([tk0 , +∞[, R) satisfying

w′(t) + ψ(t) +
w2(t)

r(t− δ)Φ(t)ck
≤ 0, tk < t < tk+1, (2.7)

for each k = k0, k0 + 1, k0 + 2, ....

Proof. Let x(t) be a nonoscillatory solution of (2.1). Without loss of generality, we may
assume that x(t) > 0 on [T − τ − δ, +∞[, for some T ≥ t0.

Recall that z(t) = x(t)+p(t)x(t− τ). By Lemma 2.2, z(t) > 0, z′(t) ≥ 0 for t ∈ [tk, tk+1[,
where tk ≥ T and k ∈ N and z(t) is non-decreasing on [T, +∞[.

Let k0 = min{k : tk ≥ T, k = 1, 2, 3, ...}. By (2.1) and hypothesis (H1), we obtain

[r(t)z′(t)]′ = −f(t, x(t), x(t− δ)) ≤ −m(t)x(t− δ) < 0,

for every t ≥ T and t 6= tk, k ∈ N. Consequently, r(t)z′(t) is a non-increasing function on
each interval [tk, tk+1[, k = k0, k0 + 1, ... .

Now, we assert that
r(t)z′(t) ≤ ckr(t− δ)z′(t− δ), (2.8)

for each tk ≤ t < tk+1, k = k0, k0 + 1, .... Indeed. First, note that

r(tk)z
′(tk) = r(tk)[x

′(tk) + p′(tk)x(tk − τ) + p(tk)x
′(tk − τ)]

= r(t−k )[Jk(x
′(t−k )) + ckp

′(t−k )x(t−k − τ) + ckp(t
−
k )x′(t−k − τ)]

= r(t−k )[ckx
′(t−k ) + ckp

′(t−k )x(t−k − τ) + ckp(t
−
k )x′(t−k − τ)]

= ckr(t
−
k )z′(t−k ).

If tk + δ ≤ t < tk+1, k = k0, k0 + 1, ..., we have tk ≤ t− δ < tk+1 − δ < tk+1, then

r(t)z′(t) ≤ r(t− δ)z′(t− δ) ≤ ckr(t− δ)z′(t− δ).

If tk ≤ t < tk + δ, k = k0, k0 + 1, ..., we have tk−1 < tk − δ ≤ t− δ < tk, then

r(t)z′(t) ≤ r(tk)z
′(tk) = ckr(t

−
k )z′(t−k ) ≤ ckr(t− δ)z′(t− δ).

Thus, the assertion is proved.
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Note that

f(t, x(t), x(t− δ)) ≥ m(t)x(t− δ) = m(t)[z(t− δ)− p(t− δ)x(t− δ − τ)],

for t 6= tk, k ∈ N and t ≥ T . Then,

[r(t)z′(t)]′ +m(t)[z(t− δ)− p(t− δ)x(t− τ − δ)] ≤ [r(t)z′(t)]′ + f(t, x(t), x(t− δ)) = 0,

for t 6= tk, k ∈ N and t ≥ T , that is

[r(t)z′(t)]′ +m(t)[z(t− δ)− p(t− δ)x(t− δ − τ)] ≤ 0.

Since z(t) is non-decreasing from Lemma 2.2, we have

x(t− δ − τ) ≤ z(t− δ − τ) ≤ z(t− δ), t ≥ T.

Then
m(t)z(t− δ)[1− p(t− δ)] ≤ m(t)[z(t− δ)− p(t− δ)x(t− δ − τ)]

and, consequently,
[r(t)z′(t)]′ +m(t)z(t− δ)[1− p(t− δ)] ≤ 0,

for t ≥ T , t 6= tk, k ∈ N.
Now, define

w(t) = Φ(t)

{
r(t)z′(t)

z(t− δ)
+ r(t− δ)h(t)ck

}
,

for each t ∈ [tk, tk+1[, k = k0, k0 + 1, .... Note that w ∈ PC1([tk0 , +∞), R).
We also have

w′(t) ≤ −2h(t)w(t) + Φ(t)

{
−m(t)[1− p(t− δ)]− r(t)z′(t)z′(t− δ)

z2(t− δ)
+ [r(t− δ)h(t)ck]

′
}
,

for each tk < t < tk+1, k = k0, k0 + 1, ....
Since r(t)z′(t) ≤ ckr(t− δ)z′(t− δ) from (2.8), we have

r(t)z′(t)z′(t− δ)

z2(t− δ)
≥ 1

ckr(t− δ)

(
r(t)z′(t)

z(t− δ)

)2

.

Then

w′(t) ≤ −2h(t)w(t) + Φ(t)

{
−m(t)[1− p(t− δ)] +

− 1

ckr(t− δ)

(
r(t)z′(t)

z(t− δ)

)2

+ [r(t− δ)h(t)ck]
′

}
,

for each tk < t < tk+1, k = k0, k0 + 1, ....
Since

r(t)z′(t)

z(t− δ)
=
w(t)

Φ(t)
− r(t− δ)h(t)ck,
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we have

w′(t) ≤ − w2(t)

ckΦ(t)r(t− δ)
+ Φ(t) {−m(t)[1− p(t− δ)]+

−r(t− δ)h2(t)ck + [r(t− δ)h(t)ck]
′} ,

Therefore,

w′(t) ≤ −ψ(t)− w2(t)

r(t− δ)Φ(t)ck
, tk < t < tk+1,

k = k0, k0 + 1, . . ..
When x(t) is eventually negative, then proof follows analogously.

Lemma 2.3 If ck = 1 and ak ≥ 1 for each k = 1, 2, 3, ..., then there is T ≥ t0 such that
w(tk)− w(t−k ) ≤ 0 for each k ∈ N with tk > T .

Proof. At first, given tk for some k ∈ N, suppose tk − δ − τ 6= tk−1. Then,

w(tk) = Φ(tk)

{
r(tk)z

′(tk)

z(tk − δ)
+ r(tk − δ)h(tk)ck

}
= Φ(t−k )

{
r(t−k )ckz

′(t−k )

z(t−k − δ)
+ r(t−k − δ)h(t−k )ck

}
= Φ(t−k )

{
r(t−k )z′(t−k )

z(t−k − δ)
+ r(t−k − δ)h(t−k )

}
= w(t−k ),

k = 1, 2, 3, ....
Now, we need to consider the case when tk − δ− τ = tk−1. Without loss of generality, we

may assume that x(t) > 0 on [T − τ − δ, +∞[, for some T ≥ t0. Then

z(tk − δ)− z(t−k − δ) = p(tk − δ)[x(tk − δ − τ)− x(t−k − δ − τ)]
= p(tk − δ)[x(tk−1)− x(t−k−1)].

Since, x(tk−1) ≥ akx(t
−
k−1) ≥ x(t−k−1), it follows that

z(tk − δ)− z(t−k − δ) ≥ 0.

By Lemma 2.2, z(t) > 0 on the interval [T,+∞[ and z′(t) ≥ 0 for t ∈ [tk, tk+1[, where tk ≥ T
and k ∈ N. Thus, we can conclude that

w(tk) ≤ w(t−k ),

for tk > T .
When x(t) < 0 on [T − τ − δ, +∞[, for some T ≥ t0, the result follows analogously.

The following theorem is an extension of Horng-Jaan Li’s criteria to oscillation. See [16].
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Theorem 2.1 Suppose (H1) to (H4) are fulfilled, ak ≥ 1, ck = 1, k ∈ N, ϕ(v) = v in
assumption (H1) and

+∞∑
k=n

∫ tk+1

tk

ψ(s)ds = +∞, (2.9)

for n ∈ N. If there exist sequences {αn}n≥1 and {ξn}n≥1 of positive real numbers, such that

ξn ∈ ]tn, tn+1[, n ∈ N, lim sup
n→+∞

(tn+1 − ξn) > 0,
+∞∑
n=1

1

αn

< +∞ and

∫ ξk

tk

ds

r(s− δ)Φ(s)
≥ αk,

k ∈ N, then system (2.1) is oscillatory.

Proof. Suppose system (2.1) is non-oscillatory. Then it follows from Proposition 2.1 that
there exist a number k0 ∈ N and a function w(t) ∈ PC1([tk0 , +∞[,R) satisfying (2.7) for
tk < t < tk+1, k = k0, k0 + 1, k0 + 2, ....

Integrating (2.7) over [tk, tk+1], k ∈ N and k ≥ k0, we obtain

w(t−k+1) ≤ w(tk)−
∫ tk+1

tk

ψ(s)ds−
∫ tk+1

tk

w2(s)

r(s− δ)Φ(s)
ds. (2.10)

For n ∈ N, we have

k0+n∑
k=k0

w(t−k+1) ≤
k0+n∑
k=k0

w(tk)−
k0+n∑
k=k0

∫ tk+1

tk

ψ(s)ds−
k0+n∑
k=k0

∫ tk+1

tk

w2(s)

r(s− δ)Φ(s)
ds.

Consequently,

w(t−k0+n+1) ≤ w(tk0) +

k0+n∑
k=k0+1

[w(tk)− w(t−k )]−
k0+n∑
k=k0

∫ tk+1

tk

ψ(s)ds +

−
k0+n∑
k=k0

∫ tk+1

tk

w2(s)

r(s− δ)Φ(s)
ds,

where n ∈ N.
By Lemma 2.3 and equation (2.9), there exists N0 > 0 such that

w(tk0) +

k0+n∑
k=k0+1

[w(tk)− w(t−k )]−
k0+n∑
k=k0

∫ tk+1

tk

ψ(s)ds < −1, for n ≥ N0.

Thus

w(t−k0+n+1) ≤ −1−
k0+n∑
k=k0

∫ tk+1

tk

w2(s)

r(s− δ)Φ(s)
ds, for n ≥ N0.
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Note that for all tk0+n < ξ < tk0+n+1, we have

w(ξ) ≤ −1−
∫ tk0+n+1

tk0+n

w2(s)

r(s− δ)Φ(s)
ds, for n ≥ N0. (2.11)

Then ∫ ξ

tk0+n

w(s)

r(s− δ)Φ(s)
ds ≤ −

∫ ξ

tk0+n

ds

r(s− δ)Φ(s)
+

−
∫ ξ

tk0+n

1

r(s− δ)Φ(s)

[∫ tk0+n+1

tk0+n

w2(µ)

r(µ− δ)Φ(µ)
dµ

]
ds, (2.12)

for each tk0+n < ξ < tk0+n+1 and n ≥ N0.
Let us consider ξk0+n ∈ ]tk0+n, tk0+n+1[, n ≥ N0, given by the hypotheses, and define

v(ξ) =

∫ ξ

tk0+n

w(s)

r(s− δ)Φ(s)
ds, ξk0+n ≤ ξ < tk0+n+1, n ≥ N0.

Then the Cauchy-Schwartz inequality implies∫ s

tk0+n

w2(µ)

r(µ− δ)Φ(µ)
dµ ≥ v2(s)

[∫ s

tk0+n

dµ

r(µ− δ)Φ(µ)

]−1

,

ξk0+n ≤ s < tk0+n+1.
Since ∫ tk0+n+1

tk0+n

w2(µ)

r(µ− δ)Φ(µ)
dµ ≥

∫ s

tk0+n

w2(µ)

r(µ− δ)Φ(µ)
dµ,

ξk0+n ≤ s < tk0+n+1, then by (2.12), we get

v(ξ) ≤ −
∫ ξ

tk0+n

ds

r(s− δ)Φ(s)
+

−
∫ ξ

tk0+n

v2(s)

r(s− δ)Φ(s)

[∫ s

tk0+n

dµ

r(µ− δ)Φ(µ)

]−1

ds,

where ξk0+n ≤ ξ < tk0+n+1 and n ≥ N0.
Now, we define H(ξ) by

∫ ξ

tk0+n

ds

r(s− δ)Φ(s)
+

∫ ξ

tk0+n

v2(s)

r(s− δ)Φ(s)

[∫ s

tk0+n

dµ

r(µ− δ)Φ(µ)

]−1

ds,

ξk0+n ≤ ξ < tk0+n+1 and n ≥ N0. Then

H ′(ξ) =
1

r(ξ − δ)Φ(ξ)
+

v2(ξ)

r(ξ − δ)Φ(ξ)

[∫ ξ

tk0+n

ds

r(s− δ)Φ(s)

]−1

11



and

0 ≤
∫ ξ

tk0+n

ds

r(s− δ)Φ(s)
≤ H(ξ) ≤ |v(ξ)|,

for ξk0+n ≤ ξ < tk0+n+1, n ≥ N0. Then

H ′(ξ)

H2(ξ)
≥ H ′(ξ)

v2(ξ)
≥ 1

r(ξ − δ)Φ(ξ)

[∫ ξ

tk0+n

ds

r(s− δ)Φ(s)

]−1

,

ξk0+n ≤ ξ < tk0+n+1, n ≥ N0.
Integrating the above inequality from ξk0+n to tk0+n+1, we have

− 1

H(t−k0+n+1)
+

1

H(ξk0+n)
≥

≥ ln

∫ tk0+n+1

tk0+n

ds

r(s− δ)Φ(s)
− ln

∫ ξk0+n

tk0+n

ds

r(s− δ)Φ(s)
.

Thus
1

H(ξk0+n)
≥ ln

∫ tk0+n+1

tk0+n

ds

r(s− δ)Φ(s)
− ln

∫ ξk0+n

tk0+n

ds

r(s− δ)Φ(s)
,

n ≥ N0.
Since

H(ξk0+n) ≥
∫ ξk0+n

tk0+n

ds

r(s− δ)Φ(s)
≥ αk0+n,

n ≥ N0, we have
+∞∑

n=N0

1

H(ξk0+n)
≤

+∞∑
n=N0

1

αk0+n

< +∞.

Thus,
+∞∑

n=N0

[
ln

∫ tk0+n+1

tk0+n

ds

r(s− δ)Φ(s)
− ln

∫ ξk0+n

tk0+n

ds

r(s− δ)Φ(s)

]
< +∞.

Then,

lim
n→+∞

[
ln

∫ tk0+n+1

tk0+n

ds

r(s− δ)Φ(s)
− ln

∫ ξk0+n

tk0+n

ds

r(s− δ)Φ(s)

]
= 0,

and this is a contradiction, because lim sup
n→+∞

[tk0+n+1 − ξk0+n] > 0. Hence, we finished the

proof.

Consider the following neutral delay differential equation of second-order,
(
x(t) +

1

t
x(t− 1)

)′′
+ (t3 − t2)x(t− 1) arctan(t) = 0, t ≥ 1,

x(t) = φ(t), −1 ≤ t ≤ 0,

(2.13)
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where φ, φ ′ : [−1, 0] → R are continuous functions. Note that

r(t) = 1, and p(t) =
1

t
.

By using the notations from [16], let q(t) = (t3 − t2) arctan(t), γ = 1 and f(x) = x. Choose

Φ(t) =
1

t2
. Then h(t) =

1

t
and we have

ψ(t) =
(t3 − t2) arctan(t)

t2

(
t− 2

t− 1

)
+

2

t4
, for t > 1.

Then, by using the software Maple, we obtain∫ +∞

t

ds

r(s− 1)Φ(s)
=

∫ +∞

t

ψ(s)ds = +∞,

for all t ≥ 1. Therefore, from [16], Theorem 2.2, the non-impulsive system (2.13) is oscilla-
tory.

As we did before, we now consider system (2.13) and prove that it remains oscillating
after the imposition of proper impulse controls.

Example 2.1 Consider the following second-order neutral delay differential equation

(
x(t) +

1

t
x(t− 1)

)′′
+ (t3 − t2)x(t− 1) arctan (t) = 0, t ≥ 1, t 6= tk,

x(tk) =

(
k + 1

k

)
x(t−k ), x′(tk) = x′(t−k ), k = 1, 2, . . . ,

x(t) = φ(t), −1 ≤ t ≤ 0,

(2.14)

where φ, φ ′ : [−1, 0] → R are continuous functions and tk = 2k− 1, k = 2, 3, 4, .... Note that
tk+1 − tk = 2 > 1, for all k = 2, 3, 4, ....

We have

r(t) = 1, p(t) =
1

t
, ak = bk =

k + 1

k
and ck = 1, k = 1, 2, . . . .

Let us consider m(t) = (t3 − t2) arctan(t). Then

lim
t→+∞

∫ t

t0

(
1

r(s)

∏
t0<tk<s

ck
max{bk, ck}

)
ds =
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=

∫ +∞

t0

∏
t0<tk<s

k

k + 1
ds

=

∫ t1

t0

∏
t0<tk<s

k

k + 1
ds+

∫ t2

t1

∏
t0<tk<s

k

k + 1
ds

+

∫ t3

t2

∏
t0<tk<s

k

k + 1
ds+ · · ·

= (t1 − t0) +
1

2
(t2 − t1) +

1

3
(t3 − t2) + · · ·

≥ 1

2
+

1

2
+

1

3
+

1

4
+ · · · = +∞.

Thus hypotheses (H1) to (H4) are satisfied.

Choose Φ(t) =
1

t2
. Then h(t) =

1

t
and

ψ(t) =
m(t)

t2

(
t− 2

t− 1

)
+

2

t4
, for t > 1.

Then
+∞∑
k=n

∫ tk+1

tk

ψ(s)ds =

∫ +∞

tn

ψ(s) ds = +∞,

for each tn ≥ 1.
Now, define the sequences {ξk}k≥2 and {αk}k≥2 by

ξk = 2k and αk = k2,

for each k = 2, 3, 4, .... Note that

tk < ξk < tk+1, k = 2, 3, 4, ...,

lim sup
k→+∞

[tk+1 − ξk] = 1,

+∞∑
k=2

1

αk

=
+∞∑
k=2

1

k2
< +∞,

and ∫ ξk

tk

1

r(s− δ)Φ(s)ck
ds =

∫ ξk

tk

ds

r(s− δ)Φ(s)
=

∫ ξk

tk

s2 ds =

=
ξ3
k

3
− t3k

3
=

12k2 − 6k + 1

3
> k2 = αk,

for each k = 2, 3, 4, .... Therefore, it follows from Theorem 2.1 that all solutions x(t) of (2.14)
are oscillatory.
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2.2 Case B

In this section, we establish an oscillation result for (2.1) under the following hypotheses:

(H∗
1 ) f : [t0 − σ, +∞]× R× R → R is continuous, uf(t, u, v) > 0 for all uv > 0,

f(t, u, v)

u
≥ n(t),

for all u 6= 0, where n : [t0 − σ, +∞[→ R is a positive continuous function.

(H∗
2 ) Ik, Jk : R → R are continuous, with Ik(0) = Jk(0) = 0, and there exists positive

number ak > 1 such that
Ik(x) = Jk(x) = akx,

for all k ∈ N.

We also assume that conditions (H3) and (H4) hold, with ck = ak and bk = ak, for each
k ∈ N.

Now, define the function ψ1 : [t0, +∞[→ R by

ψ1(t) = Φ(t)
{
n(t)[1− p(t)] + r(t)h2(t)ak − [r(t)h(t)ak]

′}
for each tk ≤ t < tk+1, k = 1, 2, 3, ....

Remark 2.3 Lemma 2.2 still holds if we replace hypothesis (H1) by (H∗
1 ) and (H2) by (H∗

2 ).

With the new conditions (H∗
1 ) and (H2)

∗, we can rewrite Proposition 2.1 as follows.

Proposition 2.2 Suppose (H∗
1 ), (H∗

2 ), (H3) and (H4) are fulfilled. If equation (2.1) is
nonoscillatory, then there exist a number k0 ∈ N and a function w ∈ PC1([tk0 , +∞[, R)
satisfying

w′(t) + ψ1(t) +
w2(t)

r(t)Φ(t)ak

≤ 0, tk < t < tk+1, (2.15)

for each k = k0, k0 + 1, k0 + 2, ....

Proof. This proof follows the main ideas of the proof of Proposition 2.1. Let x(t) be a
nonoscillatory solution of (2.1). Without loss of generality, we may assume that x(t) > 0 on
[T − τ − δ, +∞[, for some T ≥ t0.

Recall that z(t) = x(t)+p(t)x(t− τ). By Remark 2.3 and Lemma 2.2, z(t) > 0, z′(t) ≥ 0
for t ∈ [tk, tk+1[, where tk ≥ T and k ∈ N and z(t) is non-decreasing on [T, +∞[.

Let k0 = min{k : tk ≥ T, k = 1, 2, 3, ...}. By (2.1) and hypothesis (H∗
1 ), we obtain

[r(t)z′(t)]′ = −f(t, x(t), x(t− δ)) ≤ −n(t)x(t) < 0,

for every t ≥ T and t 6= tk, k ∈ N. Consequently, r(t)z′(t) is a non-increasing function on
each interval [tk, tk+1[, k = k0, k0 + 1, ... . Since ak > 1, we have

r(t)z′(t) ≤ akr(t)z
′(t), (2.16)
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for each tk ≤ t < tk+1, k = k0, k0 + 1, ....
Note that

f(t, x(t), x(t− δ)) ≥ n(t)x(t) = n(t)[z(t)− p(t)x(t− τ)],

for t 6= tk, k ∈ N and t ≥ T . Then,

[r(t)z′(t)]′ + n(t)[z(t)− p(t)x(t− τ)] ≤ [r(t)z′(t)]′ + f(t, x(t), x(t− δ)) = 0,

for t 6= tk, k ∈ N and t ≥ T , that is

[r(t)z′(t)]′ + n(t)[z(t)− p(t)x(t− τ)] ≤ 0.

Since z(t) is non-decreasing from Remark 2.3 and Lemma 2.2, we have

x(t− τ) ≤ z(t− τ) ≤ z(t), t ≥ T.

Then
n(t)z(t)[1− p(t)] ≤ n(t)[z(t)− p(t)x(t− τ)]

and, consequently,
[r(t)z′(t)]′ + n(t)z(t)[1− p(t)] ≤ 0,

for t ≥ T , t 6= tk, k ∈ N.
Now, define

w(t) = Φ(t)

{
r(t)z′(t)

z(t)
+ r(t)h(t)ak

}
,

for each t ∈ [tk, tk+1[, k = k0, k0 + 1, .... Note that w ∈ PC1([tk0 , +∞), R).
We also have

w′(t) ≤ −2h(t)w(t) + Φ(t)

{
−n(t)[1− p(t)]− r(t)z′(t)z′(t)

z2(t)
+ [r(t)h(t)ak]

′
}
,

for each tk < t < tk+1, k = k0, k0 + 1, ....
Since r(t)z′(t) ≤ akr(t)z

′(t) from (2.16), we have

r(t)z′(t)z′(t)

z2(t)
≥ 1

akr(t)

(
r(t)z′(t)

z(t)

)2

.

Then

w′(t) ≤ −2h(t)w(t) + Φ(t)

{
−n(t)[1− p(t)]− 1

akr(t)

(
r(t)z′(t)

z(t)

)2

+ [r(t)h(t)ak]
′

}
,

for each tk < t < tk+1, k = k0, k0 + 1, ....
Since

r(t)z′(t)

z(t)
=
w(t)

Φ(t)
− r(t)h(t)ak,
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we have

w′(t) ≤ − w2(t)

akΦ(t)r(t)
+ Φ(t)

{
−n(t)[1− p(t)]− r(t)h2(t)ak + [r(t)h(t)ak]

′} ,
Therefore,

w′(t) ≤ −ψ1(t)−
w2(t)

r(t)Φ(t)ak

, tk < t < tk+1,

k = k0, k0 + 1, .... If x(t) < 0 in [T − τ − δ, +∞[, for some T ≥ t0, the result follows
analogously and we complete the proof.

Lemma 2.4 If
+∞∑
k=1

r(tk)h(tk)(ak − ak−1) < +∞, then
+∞∑
k=1

(w(tk)− w(t−k )) < +∞.

Proof. Note that

w(tk) = Φ(tk)

{
r(tk)z

′(tk)

z(tk)
+ r(tk)h(tk)ak

}
= Φ(t−k )

{
r(t−k )akz

′(t−k )

akz(t
−
k )

+ r(t−k )h(t−k )ak

}
= Φ(t−k )

{
r(t−k )z′(t−k )

z(t−k )
+ r(t−k )h(t−k )ak

}
,

k = 1, 2, 3, .... Since w(t−k ) = Φ(t−k )

{
r(t−k )z′(t−k )

z(t−k )
+ r(t−k )h(t−k )ak−1

}
, k = 1, 2, ..., we have

w(tk)− w(t−k ) = r(tk)h(tk)(ak − ak−1),

k = 1, 2, 3, .... Therefore, the result is proved.

Next, we establish an oscillation criterium for system (2.1) satisfying hypotheses (H∗
1 ),

(H∗
2 ), (H3) and (H4). The proof follows similarly to the proof of Theorem 2.1 by applying

Lemma 2.4 instead of Lemma 2.3.

Theorem 2.2 Suppose (H∗
1 ), (H∗

2 ), (H3) and (H4) are fulfilled,
+∞∑
k=1

r(tk)h(tk)(ak − ak−1) <

+∞ and
+∞∑
k=n

∫ tk+1

tk

ψ(s)ds = +∞,

for n ∈ N. If there exist sequences {αn}n≥1 and {ξn}n≥1 of positive real numbers, such that

ξn ∈ ]tn, tn+1[, n ∈ N, lim sup
n→+∞

(tn+1 − ξn) > 0,
+∞∑
n=1

1

αn

< +∞ and

∫ ξk

tk

ds

r(s)Φ(s)ak

≥ αk,

k ∈ N, then system (2.1) is oscillatory.
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Example 2.2 Consider the following second-order neutral delay differential equation

(
x(t) +

1

t
x(t− 1)

)′′
+ x(t)t2 ln (t− 1) = 0, t ≥ 1, t 6= tk,

x(tk) =

(
k + 1

k

)
x(t−k ), x′(tk) =

(
k + 1

k

)
x′(t−k ), k = 1, 2, . . . ,

x(t) = φ(t), −1 ≤ t ≤ 0,

(2.17)

where φ, φ ′ : [−1, 0] → R are continuous functions and tk = 2k− 1, k = 2, 3, 4, .... Note that
tk+1 − tk = 2 > 1, for all k = 2, 3, 4, ....

We have

r(t) = 1, p(t) =
1

t
, ak =

k + 1

k
, k = 1, 2, . . . .

Let us consider n(t) = t2 ln(t− 1). Then

lim
t→+∞

∫ t

t0

(
1

r(s)

∏
t0<tk<s

ck
max{bk, ck}

)
ds =

= lim
t→+∞

∫ t

t0

(
1

r(s)

∏
t0<tk<s

ak

max{ak, ak}

)
ds =

= lim
t→+∞

∫ t

t0

1

r(s)
ds = lim

t→+∞

∫ t

t0

1ds = +∞.

Thus hypotheses (H∗
1 ), (H∗

2 ), (H3) and (H4) are satisfied.

Choose Φ(t) =
1

t2
. Then h(t) =

1

t
and

ψ1(t) =
ln(t− 1)

t
(t− 1) +

2

t4
+

2

kt4
, for tk ≤ t < tk+1, t > 1.

Then

+∞∑
k=n

∫ tk+1

tk

ψ1(s)ds =

∫ +∞

tn

(
ln(t− 1)

t
(t− 1) +

2

t4

)
ds+

+∞∑
k=n

∫ tk+1

tk

2

kt4
ds = +∞,

for each tn ≥ 1.
As before, let us define the sequences {ξk}k≥2 and {αk}k≥2 by ξk = 2k and αk = k2, for

each k = 2, 3, 4, .... Then

tk < ξk < tk+1, k = 2, 3, 4, ...,

lim sup
k→+∞

[tk+1 − ξk] = 1,

+∞∑
k=2

1

αk

=
+∞∑
k=2

1

k2
< +∞,
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and ∫ ξk

tk

1

r(s)Φ(s)ak

ds =
k

k + 1

∫ ξk

tk

s2 ds =

=

(
k

k + 1

)(
12k2 − 6k + 1

3

)
> k2 = αk,

for each k = 2, 3, 4, .... We also have

+∞∑
k=2

r(tk)h(tk)(ak − ak−1) =
+∞∑
k=2

−1

(2k − 1)k(k − 1)
< +∞.

Therefore, it follows from Theorem 2.2 that all solutions x(t) of (3.4) are oscillatory.

3 Application to the Emden-Fowler Equation

The Emden-Fowler equation is very important in mathematical physics, theoretical physics
and chemical physics, and it has being attracting much attention over the years. This
equation has the following general form

Y ′′ + p(X)Y ′ + q(X)Y = r(X)Y n, (3.1)

where n is a real number.
By using a Kummer-Liouville transformation ([12] and [18]), the equation (3.1) can be

transformed into standard form,
y′′ = f(x)yn, (3.2)

see [23]. Equation (3.2) becomes increasingly important as it arises in the modelling of many
physical systems. Perhaps its occurrence is best known as the quintessential equation in the
study of the case shear-free spherically symmetric perfect fluid motion in cosmology when
n = 2 ([8], [9], [22] and [29]).

The particular Emden-Fowler equation (Lane-Emden equation):

y′′ +
2

t
y′ + yn = 0,

is used to model the thermal behavior of a spherical cloud of gas acting under the mutual
attraction of its molecules and subject to the classical laws of thermodynamics. Its equation
arises in astrophysics [3].

For special forms of g(y), the well-known Lane-Emden equation

y′′ +
2

t
y′ + g(y) = 0,

is used to model several phenomena in mathematical physics and astrophysics such as the
theory of stellar structure, the thermal behavior of a spherical cloud of gas, isothermal gas
spheres, and theory of thermionic currents.
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On the other hand, the second order neutral delay differential equation is used in many
fields such as vibrating masses attached to an elastic bar and some variational problems, etc.
Recently, the results of Atkinson [1] and Belohorec [2] for the Emden-Fowler equation

y′′(t) + q(t)|y(t)|γ−1y(t) = 0,

where q ∈ C([t0, +∞),R) and γ > 0, have been extended to the second order neutral delay
differential equation

[y(t) + p(t)y(t− τ)]′′ + q(t)f(y(t− δ)) = 0 (3.3)

by Wong [34] under the assumption that the nonlinear function f satisfies the sublinear
condition

0 <

∫ ε

0+

du

f(u)
,

∫ −ε

0−

du

f(u)
<∞ for all ε > 0,

as well as the superlinear condition

0 <

∫ ∞

ε

du

f(u)
,

∫ −∞

−ε

du

f(u)
<∞ for all ε > 0.

Now, we are going to show that the solution of the extended Emden-Fowler equation
(3.3) is oscillatory under small perturbations (impulses).

Consider the following second-order neutral delay differential equation with impulse
[y(t) + p(t)y(t− τ)]′′ + q(t)f(y(t− δ)) = 0, t ≥ t0, t 6= tk,

x(tk) =

(
k + 1

k

)
x(t−k ), x′(tk) = x′(t−k ), k = 1, 2, . . . ,

x(t) = φ(t), −σ ≤ t ≤ 0,

(3.4)

where:

1. q ∈ C([t0,+∞],R+) and f ∈ C1(R,R);

2.
f(y)

y
≥ γ > 0 if y 6= 0;

3. 0 ≤ p(t) ≤ 1, t ≥ t0, is continuous;

4. τ > 0 and δ > 0 are constants, and σ = max{δ, τ};

5. φ, φ ′ : [t0 − σ, t0] → R are continuous functions;

6. tk = 2k − 1, k = 2, 3, 4, ....

7.

∫ +∞

t

q(s)(1− p(s− δ))

s2
ds = +∞ for every t ≥ t0.

Note that

r(t) = 1, ak = bk =
k + 1

k
, k = 1, 2, . . . and tk+1 − tk = 2 > 1, for all k = 2, 3, 4, ....

Let us verify that the hypothesis (H1)− (H4) (from Case A) are satisfied:
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(H1) Let F : [t0 − σ,+∞]× R× R → R given by F (t, u, v) = q(t)f(v) which is continuous.
By assumption, vf(v) > 0 if v 6= 0. Then

uF (t, u, v) = uq(t)f(v) = q(t)
f(v)

v
(uv) > 0,

whenever uv > 0.

Let us consider m(t) := γq(t). Then

F (t, u, v)

v
=
q(t)f(v)

v
≥ γq(t) = m(t).

(H2) By assumptions, we have Ik(x) =
k + 1

k
x and Jk(x) = x.

(H3) We also have,

lim
t→+∞

∫ t

t0

(
1

r(s)

∏
t0<tk<s

ck
max{bk, ck}

)
ds =

= lim
t→+∞

∫ t

t0

(
1

r(s)

∏
t0<tk<s

1

max{bk, 1}

)
ds =

= lim
t→+∞

∫ t

t0

( ∏
t0<tk<s

k

k + 1

)
ds =

= (t1 − t0) +
1

2
(t2 − t1) +

1

3
(t3 − t2) + · · ·

≥ 1

2
+

1

2
+

1

3
+

1

4
+ · · · = +∞.

(H4) By assumptions, p(t) and p′(t) are continuous.

Thus conditions (H1), (H2), (H3) and (H4) of Theorem 2.1 are satisfied.

Choose Φ(t) =
1

t2
. Then h(t) =

1

t
and

ψ(t) =
m(t)(1− p(t− δ))

t2
+

2

t4
, for t > 1.

Thus
+∞∑
k=n

∫ tk+1

tk

ψ(s)ds =

∫ +∞

tn

(
γq(s)(1− p(s− δ))

s2
+

2

s4

)
ds = +∞,

for each tn ≥ t0.
Now, let us define the sequences {ξk}k≥2 and {αk}k≥2 by ξk = 2k and αk = k2, for each

k = 2, 3, 4, .... Then
tk < ξk < tk+1, k = 2, 3, 4, ...,

lim sup
k→+∞

[tk+1 − ξk] = 1,
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+∞∑
k=2

1

αk

=
+∞∑
k=2

1

k2
< +∞,

and ∫ ξk

tk

1

r(s− δ)Φ(s)ck
ds =

∫ ξk

tk

s2 ds =
ξ3

3
− t3k

3
=

12k2 − 6k + 1

3
> k2 = αk,

for each k = 2, 3, 4, ....
Therefore, it follows from Theorem 2.1 that all solutions y(t) of (3.4) are oscillatory.

4 Final comments and an open problem

It worths mentioning that in [28], the authors give a counter-example to a result from [35]
(namely, Lemma 1) for the non-impulsive case, when the function p in (1.1) takes negative
values (in [α, 0], with α > −1). As a consequence, counter-examples to results from [4] and
[33] appear naturally, since these papers use Lemma 1 from [35]. As a matter of fact, when
−1 < α ≤ p(t) ≤ 0, under the conditions of [4], [33] or [35], the solutions of the systems
considered in these papers may be non-oscillatory. In view of this, a question arises: is it
possible to find adequate impulse operators which, in the case where the function p takes
negative values, the system (2.1) is oscillatory?

References

[1] F. V. Atkinson, On second order nonlinear oscillation, Pacific J. Math. 5 (1955)
643-647.

[2] S. Belohorec, Oscillatory solution of certain nonlinear differential equations of the
second order, Math. Fyz. Casopis Sloven. Akad. Vied. 11 (1961) 250-255.

[3] S. Chandrasekhar, Principles of stellar dynamics (University of Chicago Press,
Chicago, 1942).

[4] M. Chen, Z. Xu, Interval oscillation of second-order Emden-Fowler neutral delay
differential equations. Electron. J. Differential Equations, 58 (2007), pp. 1-9.

[5] J. Diblk, Z. Svoboda, Positive solutions of p-type retarded functional differential
equations. Nonlinear Anal. 64 (2006), pp. 1831-1848.

[6] R. D. Driver, A mixed neutral system, Nonlinear Anal., 8 (1984), pp. 155-158.

[7] L. P. Gimenes, M. Federson, Oscillation by impulses for a second-order delay dif-
ferential equation. Comput. Math. Appl., 52 (2006), pp. 819-828.

[8] K. S. Govinder, P. G. L. Leach and S. D. Maharaj, Integrability analysis of a
conformal equation arising in general relativity, International Journal of Theoretical
Physics 34 (1994), 625-639.

22



[9] P. Havas, Shear-free spherically symmetric perfect fluid solutions with conformal
symmetry, General Relativity and Gravitation, 24 (1992), 599-615.

[10] Z. He, W. Ge, Oscillations of second-order nonlinear impulsive ordinary differential
equations. J. Comput. Appl. Math., 158 (2003), pp. 397-406.
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