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Universidade de São Paulo-Campus de São Carlos

CP 668, 13560-970, São Carlos, SP, Brazil
<parron><federson>@icmc.usp.br

(Received June 2005; revised and accepted June 2006)

Abstract—We consider a certain second-order nonlinear delay differential equation and prove that
the all solutions oscillate when proper impulse controls are imposed. An example is given. c© 2006
Elsevier Science Ltd. All rights reserved.

Keywords—Delay differential equations, Second-order, Nonlinear, Oscillation, Impulses.

1. INTRODUCTION

In recent years, there has been an increasing interest on the oscillatory behavior of second-order
nonlinear delay differential equation. For example, see the recent papers [1–6]. However, there
are only a few papers on second-order nonlinear delay differential equations with impulses. See,
for instance, [7,8]. For the general theory of impulsive ordinary differential equations, the reader
is referred to the book [9] and to some results on the oscillatory behavior of some second-order
nonlinear impulsive ordinary differential equations, please see [10–12].

Some nonimpulsive delay differential equations are nonoscillatory, but they may become oscil-
latory if some proper impulse controls are added to them. The purpose of this paper is then to
study the oscillatory behavior of solutions of a second-order nonlinear delay differential equations
with impulses.

In [12], He and Ge study the oscillatory behavior of the following second-order nonlinear
impulsive ordinary differential equation:

(
r(t) (x′(t))σ

)′ + f(t, x(t)) = 0, t ≥ t0, t 6= tk,

x
(
t+k
)

= Ik(x(tk)), x′
(
tk

+
)

= Jk (x′(tk)) , k = 1, 2 . . . ,
(1)
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where 0 ≤ t0 < t1 < · · · < tk < · · · with limk→∞ tk = +∞ and σ is any quotient of positive odd
integers.

In [7], Peng and Ge prove an oscillation theorem for the second-order delay differential equation
with impulses

(r(t)(x′(t))σ)′ + f(t, x(t), x(t− τ)) = 0, t ≥ t0, t 6= tk,

x
(
t+k
)

= Ik(x(tk)), x′(tk+) = Jk(x′(tk)), k = 1, 2 . . . ,

x(t) = φ(t), t0 − τ ≤ t ≤ t0,
(2)

where τ > 0, 0 ≤ t0 < t1 < · · · < tk < · · · with limk→∞ tk = +∞ and tk+1 − tk > τ .
In this paper, we adapt the techniques applied by the authors in [7] and [12] to prove that the

equation
x′′(t) + f(t, x(t), x′(t)) + g(t, x(t), x(t− τ)) = 0, t ≥ t0, t 6= tk,

x(tk) = Ik(x(tk−)), x′(tk) = Jk(x′(tk−)), k = 1, 2 . . . ,

x(t) = φ(t), t0 − τ ≤ t ≤ t0,
(3)

oscillates, where τ > 0, 0 ≤ t0 < t1 < · · · < tk < · · · with limk→∞ tk = +∞ and tk+1 − tk > τ .
While in [7] and [12] the authors prove their results provided a solution exists, we assume that f

and g are dominated by continuous functions (see (H1) and (H2) below) in order to guarantee
the existence of a global (forward) solution of problem (3). The other assumptions are similar to
theirs.

Our paper is organized as follows. In Section 2, we present a lemma that plays an important
role in the proof of the main result. In Section 3, we obtain the oscillatory behavior of (3) through
impulse controls. An example is given in Section 4.

2. PRELIMINARIES

Consider the impulsive differential equation

x′′(t) + f(t, x(t), x′(t)) + g(t, x(t), x(t− τ)) = 0, t ≥ t0, t 6= tk,

x(tk) = Ik(x(tk−)), x′(tk) = Jk(x′(tk−)), k = 1, 2 . . . ,
(4)

satisfying the initial value condition

x(t) = φ(t), t0 − τ ≤ t ≤ t0, (5)

where φ, φ′ : [t0 − τ, t0]→ R have at most a finite number of discontinuities of first kind and are
right continuous at these points. We assume that

(H1) f : [t0 − τ,+∞) × R × R → R is continuous, nonnegative and f(t, u, v) ≤ z(t), for all
u, v ∈ R, where z(t) is continuous in [t0 − τ,∞);

(H2) g : [t0 − τ,+∞)× R× R→ R is continuous, ug(t, u, v) > 0, for all uv > 0 and

g(t, u, v)
ϕ(v)

≥ p(t) and
g(t, u, v)

v
≤ q(t),

for all v 6= 0, where p(t) and q(t) are continuous in [t0 − τ,∞), p(t) ≥ 0, xϕ(x) > 0, for
all x 6= 0 and ϕ′(x) ≥ 0;

(H3) Ik, Jk : R→ R are continuous, Ik(0) = Jk(0) = 0, k ∈ N and there exist positive numbers
ak, bk, ck and dk such that

ak ≤
Ik(x)
x
≤ bk, ck ≤

Jk(x)
x
≤ dk, x 6= 0, k = 1, 2, . . . ;
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(H4)

lim
t→+∞

∫ t

t0

∏
t0<tk<s

ck
bk
ds = +∞.

Now we define a solution of the impulsive problem (4),(5).

Definition 2.1. A function x(t) : [t0 − τ,+∞)→ R is a solution of problem (4),(5) if

(i) x(t) and x′(t) are continuous on [t0,+∞) \ {tk; k ∈ N}, there exist lateral limits x(t−k ),
x′(t−k ), x(t+k ), x′(t+k ) with x(t+k ) = x(tk) and x′(t+k ) = x′(tk), k ∈ N;

(ii) x(t) fulfills (4),(5);

(iii) x(tk) and x′(tk) fulfill (4), for each k ∈ N.

By PC([a, b],Rn) we mean the Banach space of piecewise right continuous functions ψ : [a, b]→
Rn with the usual supremum norm. If x ∈ PC([t0 − τ, σ],Rn), where t0 ∈ R, σ ≥ t0, then for
each t ∈ [t0, σ] we define xt ∈ PC([−τ, 0],Rn) by xt(s) = x(t+ s) for −τ ≤ s ≤ 0. We denote by
C( [a, b],Rn) the subspace of PC([a, b],Rn) of continuous functions with the induced norm.

Remark 2.1. By using the transformation y(t) = x′(t), the nonimpulsive equation in (4) can be
transformed into the following system:

x′(t) = y(t),

y′(t) = −f(t, x(t), y(t))− g(t, x(t), x(t− τ)), t ≥ t0.
(6)

Consider the function F : [t0,+∞)× R3 → R given by

F (t, x0, x1, x2) = f(t, x0, x2) + g(t, x0, x1).

If ψ ∈ PC([−τ, 0],R2), ψ = (ψ1, ψ2), we define

h(t, ψ) = (ψ2(0),−F (t, ψ1(0), ψ1(−τ), ψ2(0))).

Then system (6) with the impulsive conditions can be reduced to the system

z′(t) = h(t, zt), t ≥ t0, t 6= tk,

z(tk) = Hk(z(tk−)),
(7)

where z(t) = (x(t), y(t)), zt = (xt, yt) and Hk(z(tk−)) = (Ik(x(tk−), Jk(x′(tk−)).
In this way, under Hypotheses (H1) to (H3), in particular the dominance of f and g, imply the

global existence of solutions of (7) by [13, Theorem 3.1]. Therefore, we can guarantee that there
is a solution of (4) in [t0,+∞).

Now we define an oscillatory solution of the impulsive problem (4),(5).

Definition 2.2. A solution of (4),(5) is said to be nonoscillatory if it is eventually positive or

eventually negative. Otherwise, it is called oscillatory.

Now we present a lemma which is a version of Theorem 1.4.1 in [9] replacing the left continuity
by the right continuity of m(t) and m′(t) at tk, k ∈ N.

Lemma 2.1. Suppose

(i) the sequence {tk}k∈N satisfies 0 ≤ t0 < t1 < · · · < tk < · · · with limk→∞ tk = +∞,

(ii) m,m′ : R+ → R are continuous on R+ \ {tk; k ∈ N}, there exist the lateral limits m(t−k ),
m′(t−k ), m(t+k ), m′(t+k ) and m(t+k ) = m(tk), k = 1, 2, . . . ,

(iii) for k = 1, 2, . . . and t ≥ t0, we have

m′(t) ≤ p(t)m(t) + q(t), t 6= tk, (8)

m(tk) ≤ dkm(tk−) + bk, (9)
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where p, q ∈ C(R+,R), dk and bk are real constants with dk ≥ 0. Then the following inequality

holds:

m(t) ≤ m(t0)
∏

t0<tk<t

dk exp
(∫ t

t0

p(s) ds
)

+
∫ t

t0

∏
s<tk<t

dk exp
(∫ t

s

p(u) du
)
q(s) ds

+
∑

t0<tk<t

∏
tk<tj<t

dj exp
(∫ t

tk

p(s) ds
)
bk, t ≥ t0.

(10)

Remark 2.2. If inequalities (8) and (9) are reversed, then inequality (10) is also reversed.

3. MAIN RESULT

In this section, we will show that every solution of (4),(5) is oscillatory under hypotheses (H1)
to (H4).

In the sequel, let x(t) be a solution of (4),(5).

Lemma 3.1. Suppose (H1) to (H4) are fulfilled and there exists T ≥ t0 such that x(t) > 0 for

t ≥ T − τ . Then x′(tk) ≥ 0 and x′(t) ≥ 0 for t ∈ [tk, tk+1), where tk ≥ T .

Proof. Suppose x(t) > 0, for t ≥ T − τ . Then x(t − τ) > 0, t ≥ T . At first, we prove that
x′(t−k ) ≥ 0, tk ≥ T . If otherwise, there exists some tj ≥ T such that x′(t−j ) < 0. From (H3)
and (4), we obtain

x′(tj) = Jj(x′(t−j )) ≤ cjx′(t−j ) < 0.

Let x′(tj) = −α, α > 0. By (H1) and (H2), given t ∈ [tj , tj+1), we have

x′′(t) ≤ −g(t, x(t), x(t− τ)) ≤ −p(t)ϕ(x(t− τ)) ≤ 0.

Then x′(t) is nondecreasing in t ∈ [tj , tj+1). Moreover,

x′(t−j+1) ≤ x′(tj) = −α < 0,

x′(t−j+2) ≤ x′(tj+1) = Jj+1(x′(t−j+1)) ≤ cj+1x
′(t−j+1) ≤ cj+1(−α) < 0,

x′(t−j+3) ≤ x′(tj+2) = Jj+2(x′(t−j+2)) ≤ cj+2x
′(t−j+2) ≤ cj+2cj+1(−α) < 0,

and by induction one can prove that

x′(t−j+n) ≤ −
n−1∏
i=1

cj+iα < 0. (11)

Hence, x′(t) is decreasing in [tj ,+∞).
We now consider the impulsive differential inequalities

x′′(t) ≤ 0, t > tj , t 6= tk, k = j + 1, j + 2, . . . ,

x′(tk) ≤ ckx′(t−k ), k = j + 1, j + 2, . . . .

By Lemma 2.1 with m(t) = x′(t), we have

m(t) ≤ m(t−j )
∏

tj<tk<t

ck,

that is,
x′(t) ≤ x′(t−j )

∏
tj<tk<t

ck. (12)
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Now considering (12) and knowing that x(tk) = Ik(x(t−k )) ≤ bkx(t−k ), k = j + 1, j + 2, . . . , by
Lemma 2.1, we conclude that

x(t) ≤
∏

tj<tk<t

bk

x(t−j ) + x′(t−j )
∫ t

tj

∏
tj<tk<s

ck
bk
ds

 . (13)

By (H4) and taking j sufficiently large, we find x(t) ≤ 0. But this is a contradiction, since
x(t) > 0, for t ≥ T − τ . Therefore, x′(t−k ) ≥ 0, tk ≥ T .

It follows from (H3) that x′(tk) ≥ ckx
′(t−k ) ≥ 0 for any tk ≥ T . Because x′(t) is decreasing in

[tk, tk+1), then x′(t) ≥ x′(tk) ≥ 0, t ∈ [tk, tk+1), tk ≥ T and the proof is complete.

Remark 3.1. When x(t) is eventually negative, under hypotheses (H1) to (H4), one can prove
in a similar way that x′(tk) ≤ 0 and x′(t) ≤ 0 for t ∈ [tk, tk+1), where tk ≥ T .

Theorem 3.1. Suppose (H1) to (H4) are fulfilled and there exists a positive integer k0 such that

ak ≥ 1, for all k ≥ k0. If
+∞∑
k=0

∫ tk+1

tk

∏
t0<tk<u

1
dk
p(u) du = +∞, (14)

then all solutions of (4),(5) oscillate.

Proof. We suppose, without loss of generality, that k0 = 1. Let x(t) be a nonoscillatory solution
of (4),(5). We can assume that x(t) > 0, t ≥ t0. By Lemma 3.1, x′(t) ≥ 0 and x′(tk) ≥ 0,
t ∈ [tk, tk+1), where tk ≥ t0.

By (H3) and the fact that ak ≥ 1, k = 1, 2, . . . , we obtain

x(t0) < x(t−1 ) ≤ x(t1) ≤ x(t−2 ) ≤ · · · .

It follows that x(t) is nondecreasing in [t0,+∞).
Now let

m(t) =
x′(t)

ϕ(x(t− τ))
. (15)

Then m(tk) ≥ 0 and m(t) ≥ 0, t ≥ t0. By (H1) and equation (4), we have

m′(t) =
−f(t, x(t), x′(t))− g(t, x(t), x(t− τ))

ϕ(x(t− τ))
− x′(t)ϕ′(x(t− τ))x′(t− τ)

ϕ2(x(t− τ))
≤ −p(t), t ≥ t0, t 6= tk, tk + τ.

It follows from (H3), equation (4), ak ≥ 1 and ϕ′(x) ≥ 0 that

m(tk) =
x′(tk)

ϕ(x(tk − τ))
≤ dkx

′(t−k )
ϕ(x(t−k − τ))

= dkm(t−k ) (16)

and

m(tk + τ) =
x′(tk + τ)
ϕ(x(tk))

≤ x′(t−k + τ)
ϕ(akx(t−k ))

≤ x′(t−k + τ))
ϕ(x(t−k ))

= m(t−k + τ). (17)

Then using (16) and (17), by Lemma 2.1, we obtain

m(t) ≤ m(s)
∏

s<tk<t

dk −
∫ t

s

∏
u<tk<t

dk p(u) du, t0 ≤ s ≤ t. (18)



6 L. P. Gimenes and M. Federson

Let s→ t0 and t→ t−1 . It follows from (16) and (18) that

m(t1) ≤ d1m(t−1 ) ≤ d1

[
m(t0)−

∫ t1

t0

p(u) du
]

= d1m(t0)− d1

∫ t1

t0

p(u) du.

Similarly, knowing that t2 − t1 > τ and using (17) and the above inequality, we get

m(t2) ≤ d2m(t−2 ) ≤ d2

[
m(t1 + τ)−

∫ t2

t1+τ

p(u) du
]

≤ d2

[
m(t−1 + τ)−

∫ t2

t1+τ

p(u) du
]

≤ d2

[
m(t1)−

∫ t2

t1

p(u) du
]

≤ d2d1m(t0)− d2d1

∫ t1

t0

p(u) du− d2

∫ t2

t1

p(u) du.

By induction, we obtain

m(tn) ≤ d1d2 · · · dnm(t0)− d1d2 · · · dn
∫ t1

t0

p(u) du− d2 · · · dn
∫ t2

t1

p(u) du

− · · · − dn−1dn

∫ tn−1

tn−2

p(u) du− dn
∫ tn

tn−1

p(u) du

=
∏

t0<tk<tn+1

dk

[
m(t0)−

n−1∑
k=0

∫ tk+1

tk

∏
t0<tk<u

1
dk
p(u) du

]
.

Then in view of (14) and m(tn) ≥ 0, we find a contradiction as n → +∞, and the proof is
finished.

With the next corollaries, we intend to show that inequality (14) is fulfilled. We use Theorem 3.1
to conclude the results.

Corollary 3.1. Suppose (H1) to (H4) are fulfilled and there exists a positive integer k0 such

that ak ≥ 1 and dk ≤ 1, for all k ≥ k0. If∫ +∞

t0

p(u) du = +∞,

then all solutions of (4),(5) oscillate.

Proof. Suppose, without loss of generality, that k0 = 1. Since 1/dk ≥ 1, we have

+∞∑
k=0

∫ tk+1

tk

∏
t0<tk<u

1
dk
p(u) du = lim

n→+∞

(
n∑
k=0

∫ tk+1

tk

∏
t0<tk<u

1
dk
p(u) du

)

= lim
n→+∞

(∫ t1

t0

p(u) du+
∫ t2

t1

1
d1
p(u) du+

∫ t3

t2

1
d1d2

p(u) du+ · · ·

+
∫ tn

tn−1

1
d1d2 · · · dn−1

p(u) du+
∫ tn+1

tn

1
d1d2 · · · dn

p(u) du

)

≥ lim
n→+∞

(∫ t1

t0

p(u) du+
∫ t2

t1

p(u) du+
∫ t3

t2

p(u) du+ · · ·

+
∫ tn

tn−1

p(u) du+
∫ tn+1

tn

p(u) du

)

= lim
n→+∞

(∫ tn+1

t0

p(u)du
)

= +∞.
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Then condition (14) is satisfied. Hence, by Theorem 3.1, all solutions of the impulsive system
(4),(5) oscillate.

Corollary 3.2. Suppose (H1) to (H4) are fulfilled and there exist a positive integer k0 and a

constant α > 0 such that ak ≥ 1 and 1/dk ≥ tαk+1, for all k ≥ k0. If∫ +∞

t1

tαp(t) dt = +∞,

then all solutions of (4),(5) oscillate.

Proof. Suppose, without loss of generality, that k0 = 1 and t1 ≥ 1. Since 1/dk ≥ tαk+1, for all
k ≥ k0, we obtain

1 ≤ t1 < · · · < tk < tk+1 < · · ·

and

1
d1
≥ tα2 ,

1
d1

1
d2
≥ tα2 tα3 ≥ tα3 , . . . ,

1
d1

1
d2
· · · 1

dn
≥ tα2 tα3 · · · tαn+1 ≥ tαn+1, . . . .

Thus,

+∞∑
k=0

∫ tk+1

tk

∏
t0<tk<u

1
dk
p(u) du = lim

n→+∞

(
n∑
k=0

∫ tk+1

tk

∏
t0<tk<u

1
dk
p(u) du

)

= lim
n→+∞

(∫ t1

t0

p(u) du+
∫ t2

t1

1
d1
p(u) du+

∫ t3

t2

1
d1d2

p(u) du+ · · ·

+
∫ tn

tn−1

1
d1d2 · · · dn−1

p(u) du+
∫ tn+1

tn

1
d1d2 · · · dn

p(u) du

)

≥ lim
n→+∞

(∫ t1

t0

p(u) du+
∫ t2

t1

tα2 p(u) du+
∫ t3

t2

tα3 p(u) du+ · · ·

+
∫ tn

tn−1

tαnp(u) du+
∫ tn+1

tn

tαn+1p(u) du

)

≥ lim
n→+∞

(∫ t2

t1

uαp(u) du+
∫ t3

t2

uαp(u) du+ · · ·

+
∫ tn

tn−1

uαp(u) du+
∫ tn+1

tn

uαp(u) du

)

= lim
n→+∞

(∫ tn+1

t1

uαp(u) du
)

=
∫ +∞

t1

uαp(u) du = +∞.

Hence, condition (14) is satisfied and Theorem 3.1 implies all solutions of (4),(5) oscillate.

Theorem 3.2. Suppose (H1) to (H4) are fulfilled and ϕ(ab) ≥ ϕ(a)ϕ(b), for any ab 6= 0. If

+∞∑
k=0

∫ tk+1

tk

∏
t0<tk<u

ϕ(ak)
dk

p(u) du = +∞, (19)

then all solutions of (4),(5) oscillate.
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Proof. Let x(t) be a nonoscillatory solution of (4),(5). We can assume that x(t) > 0, t ≥ t0.
By Lemma 3.1, x′(t) ≥ 0 and x′(tk) ≥ 0, t ∈ [tk, tk+1), where tk ≥ t0. Now let m(t) be defined
by (15). Then m(tk) ≥ 0 and m(t) ≥ 0, t ≥ t0. By (H1) and equation (4), we have

m′(t) ≤ −p(t), t ≥ t0, t 6= tk, tk + τ.

It follows from (H3), equation (4), ϕ(ab) ≥ ϕ(a)ϕ(b) and ϕ′(x) ≥ 0 that

m(tk) =
x′(tk)

ϕ(x(tk − τ))
≤ dkx

′(t−k )
ϕ(x(t−k − τ))

= dkm(t−k ) (20)

and

m(tk + τ) =
x′(tk + τ)
ϕ(x(tk))

≤ x′(t−k + τ)
ϕ(akx(t−k ))

≤ x′(t−k + τ))
ϕ(ak)ϕ(x(t−k ))

=
1

ϕ(ak)
m(t−k + τ).

(21)

Then using (20) and (21), by Lemma 2.1, we obtain

m(t) ≤ m(s)
∏

s<tk<t

dk −
∫ t

s

∏
u<tk<t

dk p(u) du, t0 ≤ s ≤ t. (22)

Let s→ t0 and t→ t−1 . It follows from (21) and (22) that

m(t1) ≤ d1m(t−1 ) ≤ d1

[
m(t0)−

∫ t1

t0

p(u) du
]

= d1m(t0)− d1

∫ t1

t0

p(u) du.

Similarly, knowing that t2 − t1 > τ and using (21) and the above inequality, we get

m(t2) ≤ d2m(t−2 ) ≤ d2

[
m(t1 + τ)−

∫ t2

t1+τ

p(u) du
]

≤ d2

[
1

ϕ(a1)
m(t−1 + τ)−

∫ t2

t1+τ

p(u) du
]

≤ d2

[
1

ϕ(a1)
m(t1)−

∫ t2

t1

p(u) du
]

≤ d2d1

ϕ(a1)
m(t0)− d2d1

ϕ(a1)

∫ t1

t0

p(u) du− d2

∫ t2

t1

p(u) du.

Then by induction, we obtain

m(tn) ≤ d1d2 · · · dn
ϕ(a1)ϕ(a2) · · ·ϕ(an−1)

[
m(t0)−

∫ t1

t0

p(u) du− ϕ(a1)
d1

∫ t2

t1

p(u) du

− · · · − ϕ(a1)ϕ(a2) · · ·ϕ(an−2)
d1d2 · · · dn−2

∫ tn−1

tn−2

p(u) du− ϕ(a1)ϕ(a2) · · ·ϕ(an−1)
d1d2 · · · dn−1

∫ tn

tn−1

p(u) du

]

=
d1d2 · · · dn

ϕ(a1)ϕ(a2) · · ·ϕ(an−1)

[
m(t0)−

n−1∑
k=0

∫ tk+1

tk

∏
t0<tk<u

ϕ(ak)
dk

p(u) du

]
.

But in view of (19) and m(tn) ≥ 0, we find a contradiction as n → +∞, and the proof is
finished.
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Corollary 3.3. Suppose (H1) to (H4) are fulfilled and there exist a positive integer k0 and a

constant α > 0 such that ϕ(ak)/dk ≥ tαk+1, for all k ≥ k0. If∫ +∞

t1

tαp(t) dt = +∞,

then all solutions of (4),(5) oscillate.

The proof of Corollary 3.3 is omitted, since it can be deduced from Theorem 3.2 and it is
similar to that of Corollary 3.2.

4. AN EXAMPLE

Consider the impulsive delay differential equation

x′′(t) + x(t− τ) + arctan |x′(t)| = 0, t ≥ 0, t 6= tk,

x(tk) =
(
k + 1
k

)
x(t−k ), x′(tk) = x′(t−k ), k = 1, 2, . . . ,

x(t) = φ(t), −τ ≤ t ≤ 0,

(23)

where tk+1 − tk > τ , k = 1, 2, . . . and φ, φ′ : [−τ, 0]→ R are continuous.
Since ϕ(v) = v, p(t) = 1, ak = bk = (k + 1)/k and ck = dk = 1, k = 1, 2, . . . , hypotheses (H1)

to (H3) are satisfied. Notice that

lim
t→+∞

∫ t

t0

∏
t0<tk<s

ck
bk
ds =

∫ +∞

t0

∏
t0<tk<s

k

k + 1
ds

=
∫ t1

t0

∏
t0<tk<s

k

k + 1
ds+

∫ t2

t1

∏
t0<tk<s

k

k + 1
ds

+
∫ t3

t2

∏
t0<tk<s

k

k + 1
ds+ · · ·

= (t1 − t0) +
1
2

(t2 − t1) +
1
3

(t3 − t2) + · · ·

=
1
2

+
1
2

+
1
3

+
1
4

+ · · · = +∞.

Thus, (H4) is also satisfied.
Let k0 = 1. Then ak ≥ 1 and dk = 1 for all k ≥ 1. And since∫ +∞

t0

p(u) du =
∫ +∞

0

du = +∞,

it follows from Corollary 3.1 that all solutions x(t) of (23) oscillate.
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