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Abstract. We present a version of the Poincaré-Bendixson Theorem on the
Klein bottle K2 for continuous vector fields. As a consequence, we obtain
the fact that K2 does not admit continuous vector fields having a ω-recurrent
injective trajectory.

1. Introduction. When investigating the asymptotic behavior of dynamical sys-
tems, it is essential to know the structure of the sets where the trajectories go to in
the future or where they come from in the past. The theory of Poincaré-Bendixson
treats the problem of determining the structure of such sets known as “limit sets”.

In the end of the 19th century, H. Poincaré presented a theorem in [16], without
giving a complete proof, which describes the structure of the limit sets of trajectories
in analytic vector fields on the plane. In 1901, I. Bendixson proved in [3] the
statement presented by H. Poincaré under the weaker hypothesis that the vector
field is of class C1. The classic version of the Poincaré-Bendixson Theorem states
that if a trajectory is bounded and its limit set does not contain any singular point,
then it is a periodic orbit.

After the pioneer works of H. Poincaré and I. Bendixson, several generalizations
of the Poincaré-Bendixson Theorem were established. For instance, the theorem was
generalized for bidimensional manifolds in [9] and [18] (see also [2]). For continuous
flows, there is a result by O. Hajek in [10] and for semiflows, we refer to the result
by K. Ciesielski in [5]. In the case of impulsive semiflows, we refer to [4]. A version
of the Poincaré-Bendixson Theorem for continuous vector fields on the plane can
be found in [11]. This last result can be easily extended to the cylinder.

In 1923, H. Kneser proved in [12] that a continuous flow on the Klein bottle with-
out singular points admits a periodic orbit. This result also holds in the presence of
singular points. This fact was proved by S. Kh. Aranson in [1] and, independently,
by N. G. Markley in [13]. In fact, Aranson and Markley showed that continuous
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flows on the Klein bottle do not admit non-trivial recurrent trajectories. Later, in
1978, a simplified proof of this fact was presented in [8].

In the present paper, we give a version of the Poincaré-Bendixson Theorem for
continuous vector fields on the Klein bottle.

We organize the article as follows. In Section 2, we present the basic definitions
and terminology of continuous vector fields on compact bidimensional manifolds.
Further in this section, we investigate some properties of the limit sets and we in-
troduce the concept of “weak” recurrence for trajectories. In Section 3, we deal
with some topological aspects of the Klein bottle which we present in several aux-
iliary results. Finally, we present a version of the Poincaré-Bendixson Theorem for
continuous vector fields on the Klein bottle in two situations. We assume that the
continuous vector field has a finite number of singularities and we consider an in-
jective trajectory. Then we describe the limit set of this trajectory in the case it is
“weakly” ω-recurrent (Theorem 3.7) and in the case it is not “weakly” ω-recurrent
(Theorem 3.8). As a consequence, we conclude that a continuous vector field on the
Klein bottle does not have an injective trajectory which is ω-recurrent in the usual
sense.

2. Continuous vector fields. This section is devoted to the presentation of the
basis of the theory of continuous vector fields on compact bidimensional manifolds.
We also investigate some properties of the limit sets and we introduce a weaker
notion of recurrence for trajectories.

2.1. Basic definitions and terminology. Let M be a compact bidimensional
manifold. By a compact bidimensional manifold we mean a bidimensional manifold
which is compact, connected, boundaryless and of class C∞.

We denote by X(M) the space of continuous vector fields on M . Given X ∈
X(M), we say that a curve γp : R → M of class C1 is a solution of X through

p ∈ M , whenever γp(0) = p and γ′p(t) = X(γp(t)) for t ∈ R. By Peano’s Theorem,
for each point p ∈M , there exists at least one solution γp : R →M . For simplicity,
we identify the curve γp with its range {γp(t) : t ∈ R} which we refer to as a
trajectory (or orbit) of X through p. The positive semi-trajectory (respectively, the
negative semi-trajectory) of X through p and contained in γp is the set

γ+
p := {γp(t) : t ≥ 0} (respectively, the set γ−p := {γp(t) : t ≤ 0}).

Thus γp = γ+
p ∪γ−p . An arc of a trajectory of X is a connected subset of a trajectory.

We say that p ∈ M is a singular point or a singularity (respectively a regular

point) of X , whenever X(p) = 0 (respectively X(p) 6= 0). A trajectory is called
regular, if it does not contain singular points. A trajectory γ is periodic, if there
exists τ > 0 such that γ(t+ τ) = γ(t) for all t ∈ R.

Recall that trajectories of continuous vector fields may cross themselves or each
other. If a trajectory crosses itself, then it is clear that it contains a periodic orbit.
In the present paper, we assume that all trajectories of continuous vector fields are
regular, except for the trajectories which are singular points. Indeed this can be
done, without loss of generality, since we can consider another continuous vector
field with the same set of singularities and the same phase portrait, but having only
regular trajectories, except for the trajectories which are singular points (see the
Appendix).

We say that any one-dimensional submanifold Σ of M is transversal to the vector
field X , if it does not contain any singularity of X and it is transversal to each
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trajectory of X . A transversal is called a transversal segment, if it is homeomorphic
to a non-degenerate closed subinterval of R. In this manner, any transversal segment
admits a total order “≤” induced by the total order of the interval. We say that Σ
is a transversal segment through p ∈ M , if p is not an endpoint of Σ. Thus if Σ is
a transversal segment through p, then Σ \ {p} has two connected components.

2.2. Limit sets and weak recurrence. Let M be a compact bidimensional man-
ifold and X ∈ X(M). The ω-limit set of a trajectory γ of X is the set

ω(γ) := {q ∈M : ∃ (tn)n∈N with tn → ∞ and γ(tn) → q, as n→ ∞}.

Analogously, the α-limit set of a trajectory γ is defined by

α(γ) := {q ∈M : ∃ (tn)n∈N with tn → −∞ and γ(tn) → q, as n→ ∞}.

The ω-limit set (respectively the α-limit set) of the trajectory γ is also called the
ω-limit set of the positive semi-trajectory γ+ ⊂ γ (respectively the α-limit set of
the negative semi-trajectory γ− ⊂ γ) and it is denoted by ω(γ+) (respectively by
α(γ−)).

In the next lines, we present some properties of the ω-limit set of a positive
semi-trajectory. An analogous result holds for the α-limit set of a negative semi-
trajectory.

Proposition 1. Let X ∈ X(M) and γ+ = {γ(t) : t ≥ 0} be a positive semi-

trajectory of X. Then the following properties hold:

(i) ω(γ+) 6= ∅;

(ii) ω(γ+) is compact;

(iii) ω(γ+) is connected.

Proof. The proof of this proposition follows similarly to the particular case of con-
tinuous flows on compact bidimensional manifolds. See [2, Lemma 1.5, p. 48].

Definition 2.1. Let γ and γ̃ be trajectories of X ∈ X(M). We say that γ̃ is
shadowed by γ (or γ shadows γ̃), whenever the following conditions hold:

(1) there is an increasing sequence (tn)n∈N of real numbers, with lim
n→∞

tn = ∞;

(2) γ̃(t) = lim
n→∞

γ(t+ tn), t ∈ R, where the limit is uniform on each compact

interval of R.

In what follows, we will prove a result for continuous vector fields which guaran-
tees an “invariance” of the ω-limit set. In the case of continuous flows, the invariance
of the ω-limit set follows from the continuous dependence of the trajectory on the
initial conditions (see [2, Lemma 1.5, p. 48]). In the case of continuous vector
fields, we guarantee that, given a point of the ω-limit set, there exists at least one
trajectory through this point and entirely contained in the ω-limit set.

Proposition 2. Let X ∈ X(M) and γ be a trajectory of X. If p ∈ ω(γ), then there

is a trajectory γp of X through p and shadowed by γ. Furthermore, γp ⊂ ω(γ).

Proof. Let (tn)n∈N be an increasing sequence of real numbers, with tn → ∞ and
γ(tn) → p as n→ ∞. Define pn = γ(tn), for each n ∈ N. Then γpn

(t) = γ(t+tn) is a
trajectory of X through pn. By Theorem II 3.2 from [11], we can take an increasing
subsequence (tnk

)k∈N of (tn)n∈N and a trajectory γp of X through p satisfying

γp(t) = lim
k→∞

γ(t+ tnk
), t ∈ R,
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where the limit is taken uniformly on each compact interval of R. This completes
the proof.

Corollary 1. Under the conditions of Proposition 2, if ω(γ) consists of a single
point p ∈M , then p is a singular point of X and lim

t→∞

γ(t) = p.

Definition 2.2. We say that a trajectory γ of X ∈ X(M) is weakly ω-recurrent
(respectively weakly α-recurrent), if there exists p ∈ γ such that p ∈ ω(γ) (respec-
tively p ∈ α(γ)). Under these conditions, we also say that γ is weakly ω-recurrent
(respectively weakly α-recurrent) at the point p. A trajectory is weakly recurrent if
it is weakly ω-recurrent or weakly α-recurrent. If moreover γ ⊂ ω(γ) (respectively
γ ⊂ α(γ)), then we say that γ is ω-recurrent (respectively α-recurrent).

A singular point and a periodic orbit are weakly recurrent trajectories. In each
of these cases, we say that the weakly recurrent trajectory is trivial.

3. Main results. This section is divided into two parts. In the first part, we deal
with two important results for the Klein bottle K2. One of them says that the
complement of a certain kind of closed curve in K2 is a cylinder. The other result
gives us information about simple closed curves in K2. In the second part of this
section, we present a version of the Poincaré-Bendixson Theorem for continuous
vector fields in K2 (see Theorems 3.7 and 3.8).

3.1. Topological aspects.

Definition 3.1. Consider a simple closed curve C on a compact bidimensional
manifold M . We say that C is two-sided, if it has a neighborhood which is homeo-
morphic to a cylinder. Otherwise, we say that C is one-sided.

Note that any one-sided curve has a neighborhood which is homeomorphic to a
Möbius strip.

Given a two-sided curve C on M and a neighborhoodN(C) of C which is homeo-
morphic to a cylinder, then N(C) \ C has two connected components. We define
the two sides of C as these connected components.

The next lemma says that if the complement of a two-sided curve on the Klein
bottle K2 is connected, then it is a cylinder. A proof of this fact using the Poincaré-
Hopf Index Theorem (see [17]) was presented in [8]. The proof we present here is
different. We only use topological properties of K2 to get the result.

Lemma 3.2. Let C be a simple closed curve on the Klein bottle K2. If C is two-

sided and K2 \ C is connected, then K2 \ C is a cylinder.

Proof. Let V0 and V1 be neighborhoods of C which are homeomorphic to a cylinder
and such that V0 ⊂ V1. By χ(M) we mean the Euler characteristic of a manifold
M . According to [19, p. 205], we have

χ(K2) = χ(K2 \ V0) + χ(V1) − χ((K2 \ V0) ∩ V1).

Since χ(K2) = 0, χ(V1) = χ(S1 × [0, 1]) = 0 and χ((K2 \ V0) ∩ V1) = χ((S1 ×
[0, 1])∪(S1×[0, 1])) = 0 hold, χ(K2\V0) = 0 holds. Thus, sinceK2\V0 is a compact
manifold whose boundary consists of two circles, it follows from the classification
of manifolds theorem that K2 \ V0 is a cylinder and, hence, K2 \ C is a cylinder.
This completes the proof.
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Let M be a compact bidimensional manifold with non-empty boundary and
assume that the boundary of M is homeomorphic to a circle. Let D be a closed
disc (i.e., D is homeomorphic to {(x, y) ∈ R

2 : x2 + y2 ≤ 1}). By M ∪∂ D we
mean a compact bidimensional manifold obtained by glueing the boundary of M
to the boundary of D. This means that if h : ∂M → ∂D is a homeomorphism
from the boundary of M to the boundary of D, then M ∪∂ D is the quotient space
obtained by identifying the points p with h(p) for all p ∈ ∂M . The type of topology
in the manifold M ∪∂ D depends only on the type of topology in M . For further
information, the reader may want to consult [14].

The next result says that the Klein bottle does not admit three closed curves
which are simple and disjoint and are one-sided.

Lemma 3.3. If C1, C2 and C3 are three disjoint simple closed curves on the Klein

bottle K2, then at least one of these curves is two-sided.

Proof. We will prove that if C1 and C2 are one-sided curves, then C3 is necessarily
two-sided.

Let N(C1) be a neighborhood of C1 in K2 which is homeomorphic to a Möbius
strip and is such that N(C1)∩C2 = ∅. Let D1 be a closed disc. By the classification
of manifolds theorem, [K2 \ N(C1)]

⋃
∂ D1 is the projective plane P 2. Since C2 is

a one-sided curve in P 2, we can consider a neighborhood N(C2) of C2 in P 2 which
is homeomorphic to a Möbius strip and is such that N(C2) ∩ C3 = ∅. Applying
the classification of manifolds theorem again, we conclude that [P 2 \N(C2)]

⋃
∂ D2

is the sphere S2, where D2 denotes a closed disc. Since all closed curves in S2 are
two-sided and C3 is contained in S2, it follows that C3 is two-sided.

3.2. The Poincaré-Bendixson Theorem. Let M be a compact bidimensional
manifold and let γ be a trajectory of X ∈ X(M). In what follows, [p, q]γ (respec-
tively (p, q)γ) denotes the closed oriented arc (respectively the open oriented arc)
of trajectory of X contained in γ, with starting point p and ending point q. The
orientation of this arc is that induced by X .

Let Σ be a transversal segment to X and let p, q ∈ Σ. By [p, q]Σ we mean the
subinterval of Σ with endpoints p and q.

For continuous flows, the fact that every ω-recurrent trajectory on the Klein
bottle K2 is trivial was presented in [8], where the following result by M. Peixoto
[15] was applied: Given an ω-recurrent trajectory γ of a continuous flow, there exists

a transversal circle through a point of γ.
In order to treat ω-recurrent trajectories in the case of continuous vector fields,

we will introduce the notion of semi-transversal circle. Then we will prove some
results concerning the existence of such circles in K2.

Definition 3.4. Let γ be a trajectory of X ∈ X(M) which intercepts a transversal
segment Σ at points p and q. We say that the curve [p, q]γ ∪ [p, q]Σ formed by the
union of the arc of trajectory [p, q]γ of X with the subinterval [p, q]Σ of Σ is the
semi-transversal circle to X through γ, whenever it is a simple closed two-sided
curve.

The next result establishes conditions for the existence of a semi-transversal circle
through an injective trajectory of X ∈ X(K2).

Lemma 3.5. Let γ be an injective trajectory of X ∈ X(K2). If γ intercepts a

transversal segment Σ at four distinct points, then there exists a semi-transversal

circle to X through γ.



500 D. P. DEMUNER, M. FEDERSON AND C. GUTIERREZ

Proof. Let p1, p2, p3 and p4 be distinct consecutive points of the intersection of
γ in Σ. Without loss of generality, we can assume that p1, p2, p3 and p4 form a
monotonous sequence in Σ. Otherwise, the construction of a semi-transversal circle
through γ is immediate.

Let us consider, then, the following simple closed curves [p1, p2]γ ∪ [p1, p2]Σ,
[p2, p3]γ ∪ [p2, p3]Σ and [p3, p4]γ ∪ [p3, p4]Σ (see Figure 1(a)). By slightly perturbing

these curves, it is possible to obtain disjoint simple closed curves C̃1, C̃2 and C̃3 (see
Figure 1(b)). Then, it follows from Lemma 3.3, that at least one of these curves is
one-sided. Thus there exists a semi-transversal circle to X through γ and the result
follows.

(a) (b)

Figure 1. Simple closed curves.

Corollary 2. If γ is a weakly ω-recurrent injective trajectory (respectively weakly

α-recurrent) of X ∈ X(K2), then there exists a semi-transversal circle C to X
through γ. Moreover, K2 \ C is connected.

Proof. Suppose γ is weakly ω-recurrent at p ∈ γ and let Σ be a transversal segment
through p. Since p ∈ ω(γ), the positive semi-trajectory γ+

p ⊂ γ intercepts Σ at
an infinite number of points. Thus, by Lemma 3.5, there exists a semi-transversal
circle C = [p1, p2]γ ∪ [p1, p2]Σ to X through γ, where p1 ∈ γ+

p ⊂ γ (see Figure 2).
Suppose p belongs to a connected component of Σ \ {p2} which contains p1 (see

Figures 2(a) and 2(b)). Let us denote by p3 the first point at which the positive
semi-trajectory γ+

p2
⊂ γ intercepts this component. Since the arc of trajectory

(p2, p3)γ is a path joining the two sides of C, without intercepting C, K2 \ C is
connected.

In the case where p does not belong to a connected component of Σ \ {p2} which
contains p1, it is also true that K2 \ C is connected, since the arc of trajectory
(p, p1)γ is a path joining the two sides of C, without intercepting C (see Figure
2(c)).

Now, we will extend the notion of a graph for continuous vector fields. Then we
will present a version of the Poincaré-Bendixson Theorem which says that, in any
continuous vector field on the Klein bottle K2, with a finite number of singularities,
the ω-limit set of a weakly ω-recurrent injective trajectory is either a periodic orbit
or a graph.
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(a) (b) (c)

Figure 2. The connectivity of K2 \ C.

Definition 3.6. A graph for X ∈ X(M) is a connected closed subset of M which
has a finite number of singularities and a sequence (finite or infinite) of regular
injective trajectories such that the α- and ω-limit sets are singularities.

Theorem 3.7. Let X ∈ X(K2) be a continuous vector field with a finite number

of singularities and let γ be a weakly ω-recurrent injective trajectory. Then ω(γ) is

precisely one of the following sets:

(i) A periodic orbit;

(ii) A graph.

Proof. By Corollary 2, there exists a semi-transversal circle C to X through γ such
that K2 \C is connected. By Lemma 3.2, we can assume that K2 \C is an annulus,
where the boundary circles, which we shall denote by C1 and C2, are oriented by the
arrows as in Figure 3. Such circles are identified by a homeomorphism h : C1 → C2

which preserves orientation.

Figure 3. Annulus with boundary C1 and C2.

We assert that there exists r ∈ γ such that the positive semi-trajectory γ+
r ⊂ γ

stays in the annulus K2 \ C or in a Möbius strip. Indeed, it is enough to prove
that if γ intercepts C in three consecutive points p, q and r, then the positive semi-
trajectory γ+

r ⊂ γ stays in a Möbius strip. We denote by pq the arc of C with
endpoints p and q and containing r.
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Since K2 \ C is an annulus and γ is injective, the semi-trajectory γ+
r ⊂ γ can

intercept C only once more in the arc rq ⊂ pq with endpoints r and q (see Figure
3). Therefore the semi-trajectory γ+

r ⊂ γ stays in the Möbius strip (see Figure 4)
and the assertion follows.

Figure 4. Möbius strip.

Since the Poincaré-Bendixson Theorem holds for continuous vector fields on the
cylinder (see [11, Theorem 4.2, p. 154]), the above assertion and the fact that the
cylinder is an orientable double covering of the Möbius strip imply that ω(γ) is a
periodic orbit or a graph and the proof is complete.

As an immediate consequence of the proof of Theorem 3.7, we obtain a version
of Theorem 2 from [8] (see also [1] and [13]) for continuous vector fields. We present
such result in the next corollary.

Corollary 3. Any continuous vector field X ∈ X(K2) has no ω-recurrent injective

trajectory.

Now, we proceed so as to present a version of the Poincaré-Bendixson Theorem
on the Klein bottle K2 in the case where no injective trajectory in X ∈ X(K2) is
weakly ω-recurrent. The next two results will be used in the proof of this theorem.

Proposition 3. Let X ∈ X(M) be a continuous vector field on an orientable com-

pact bidimensional manifold M and let γ be an injective trajectory which is not

weakly ω-recurrent. If γ̃ is a periodic orbit which is shadowed by γ, then ω(γ) = γ̃.

Proof. The main ideas of this proof were borrowed from [2, Lemma 1.6, p. 49].
Since M is orientable, γ̃ has a neighborhood U which is homeomorphic to an

annulus such that γ̃ separates U into two connected components. Then it follows
from the continuity of X that the set of singular points of X is closed and, hence,
disjoint from γ̃. Thus we can consider that the neighborhood U is sufficiently small
such that is does not contain any singular point of X .

Let Σ be a transversal segment through a point p ∈ γ̃ such that Σ ⊂ U and γ̃
intercepts Σ only at p. Since p ∈ ω(γ), γ intercepts Σ infinitely many times. Let
p1 and p2 be consecutive points of intersection of γ and Σ at increasing times (see
Figure 5). Since γ̃ is shadowed by γ, we can take p1 sufficiently close to p so that
the arc of trajectory [p1, p2]γ is contained in U . Then, since γ̃ separates U and
γ̃ ∩ γ = ∅, [p1, p2]γ belongs to a unique component of U \ γ̃. Therefore the simple
closed curve Γ = [p1, p2]γ ∪ [p1, p2]Σ does not intercept γ̃ and it is contained in U .

If Γ bounds a simply connected domain D in U , then D ⊂ U contains a singular
point. This fact follows from two known results. See, for instance, [11, Theorem
4.3, p. 155] and [11, Theorem 3.1, p. 150]. But this contradicts the choice of the
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neighborhood U . Thus the curve Γ is not homotopic to a point in U . Moreover,
the union of Γ and γ̃ bounds an annular domain K ⊂ U (see Figure 5).

Figure 5. The annulus K.

Let ΣR and ΣL denote the connected components of Σ \ {p}. In order to fix
ideas, suppose p1, p2 ∈ ΣR. Since p belongs to the ω-limit set of γ, one and only
one of the following situations holds:

(a) the positive semi-trajectory γ+
p2

⊂ γ does not intercept ΣL;

(b) γ+
p2

⊂ γ intercepts ΣL at points which are arbitrarily close to p.

In case (a), we will show that p2 belongs to Σ and is between p1 and p. Suppose
the contrary, that is, suppose p1 belongs to Σ and is between p2 and p. Then
γ+

p2
⊂ γ leaves the annulus K and no longer intercepts it, since in [p1, p2]Σ all semi-

trajectories leave K and γ is injective (see Figure 6). But in such a case, this means
that γ+

p2
⊂ γ does not intercept Σ in any neighborhood of p, contradicting the fact

that p ∈ ω(γ).

Figure 6. p1 between p2 and p.

Let us prove, then, the proposition for case (a). By the previous paragraph, we
know that p2 is in Σ between p1 and p. Let p3 denote the first point at which
γ+

p2
⊂ γ intercepts Σ. We assert that p3 is in Σ between p2 and p. Indeed, since the

semi-trajectory γ+
p2

⊂ γ enters K, it cannot leave K because in [p1, p2]Σ all semi-
trajectories enter K and γ is injective (see Figure 5). For this reason, p3 /∈ [p1, p2]Σ
and, hence, p3 ∈ [p2, p]Σ. Repeating this procedure several times, one can obtain a
sequence (pn)n∈N in Σ with the following properties:

(a1) pn+1 ∈ γ+
pn

∩ Σ, where γ+
pn

⊂ γ;
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(a2) the point pn+1 is in Σ between pn and p (monotonicity);
(a3) γ

+
p1

⊂ γ does not intercept Σ at any point, except for the points pn, n ∈ N

(see Figure 7).

Figure 7. The monotone sequence (pn)n∈N.

It follows from property (a2) that the sequence (pn)n∈N has an accumulation
point q ∈ Σ. Since p ∈ ω(γ), q = p holds. Besides, (a2) and (a3) imply ω(γ) ∩ Σ =
{p}.

Since the semi-trajectory γ+
p2

⊂ γ is contained in K, the argument above can be
employed and therefore one can conclude that:

(a4) any transversal segment through a point p̃ ∈ γ̃ intercepts ω(γ) only at p̃.

Using property (a4), let us suppose ω(γ) \ γ̃ 6= ∅. Then ω(γ) \ γ̃ has an accu-
mulation point p̃ ∈ γ̃, since ω(γ) is connected. Let Σp̃ be a transversal segment
through p̃. Using Proposition 2 and the fact that every neighborhood of p̃ contains
points of ω(γ) \ γ̃, then there exists a trajectory γp∗

⊂ ω(γ) ⊂ K through a point
p∗ ∈ ω(γ) \ γ̃ and intercepting Σp̃. The point of interception is necessarily p̃, due
to (a4).

Let γp∗
(τ) ∈ γ̃, whenever γp∗

(t) /∈ γ̃ for t between 0 and τ . Consider a transver-
sal segment Σ∗ through γp∗

(τ). Then, a small translation of Σ∗ to a convenient
direction is a transversal segment which intercepts γ̃ and γp∗

at two distinct points
(see Figure 8). This contradicts (a4) and implies the result in case (a).

Figure 8. The transversal segments Σp̃ and Σ∗.

Now, we consider case (b). It follows from the previous arguments that, in this
case, the semi-trajectory γ+

p2
⊂ γ leaves K and it no longer intercepts K. Similarly
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to the construction of K, one can construct an annulus Ǩ ⊂ U bounded by γ̃ and by
a simple closed curve formed by the union of an arc [p̌1, p̌2]γ of the semi-trajectory
γ+

p2
⊂ γ and the subinterval [p̌1, p̌2]Σ of Σ (see Figure 9). Since γ̃ ⊂ ω(γ), the

semi-trajectory γ+
p2

⊂ γ enters the annulus Ǩ and, therefore, p̌2 is between p̌1 and
p necessarily.

The rest of the proof follows analogously to case (a), with K, p1 and p2 replaced
by Ǩ, p̌1 and p̌2 respectively.

Figure 9. The annulus Ǩ.

Proposition 4. Let X ∈ X(K2) and γ be an injective trajectory which is not weakly

ω-recurrent. Suppose the vector field X has a finite number of singularities in ω(γ).
If γ̃ is an injective trajectory shadowed by γ, then ω(γ̃) and α(γ̃) are singularities.

Proof. Suppose ω(γ̃) contains a regular point p. Let Σ be a transversal segment
through p. Since p ∈ ω(γ̃), the positive semi-trajectory γ̃+ ⊂ γ̃ intercepts Σ infin-
itely many times. Then, by Lemma 3.5, there exists a semi-transversal circle to X

through γ̃, say C̃ = [p1, p2]γ̃ ∪ [p1, p2]Σ. Since γ̃ is shadowed by γ, we can construct

a semi-transversal circle C to X through γ which is sufficiently close to C̃, with p1

or p2 in C (see Figure 10).

(a) p1 ∈ C. (b) p2 ∈ C.

Figure 10. The semi-transversal circles C and C̃.
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In order to fix ideas, let us suppose p1 belongs to C (Figure 10(a)). Since p1 ∈
ω(γ), there exist arcs of trajectories of X which are contained in γ and join the two
sides of C without intercepting C. Thus K2 \ C is connected.

Now, the argument we used to prove Theorem 3.7 allows us to conclude that
ω(γ) is a graph, since γ̃ is a non-periodic trajectory contained in ω(γ). But this
contradicts the existence of a regular point p in ω(γ̃). Therefore, ω(γ̃) is a singular
point.

Analogously, one can prove that α(γ̃) is a singular point which belongs to ω(γ).

Theorem 3.8. Let X ∈ X(K2) be a continuous vector field with a finite number

of singularities. If γ is an injective trajectory which is not weakly ω-recurrent, then

ω(γ) is exactly one of the following sets:

(i) A singularity;

(ii) A periodic orbit;

(iii) A graph.

Proof. If ω(γ) does not contain regular points, then ω(γ) is a singleton which is a
singularity, since X has a finite number of singularities and ω(γ) is connected.

Now, we suppose ω(γ) contains a regular point p. Consider a transversal segment
Σ toX through p. By Lemma 3.5, there exists a semi-transversal circle toX through
γ, say C = [p1, p2]γ ∪ [p1, p2]Σ.

If C is a curve which is not homotopic to a point in K2, then we know that
K2 \C is a cylinder (whenever K2 \C is connected, by Lemma 3.2) or it consists of
two Möbius strips (see [6, p. 139]). Then, there exists r ∈ γ such that the positive
semi-trajectory γ+

r ⊂ γ remains in a cylinder or in a Möbius strip. Hence ω(γ) is a
periodic orbit or a graph.

If C is a curve which is homotopic to a point in K2, then C bounds an open disc
D in K2. Note that, in this case, p /∈ C. If p ∈ D, then ω(γ) is a periodic orbit or
a graph (see [11, Theorem 4.2, p. 154]).

In what follows, we can assume that all semi-transversal circles to X through γ
are homotopic to a point in K2 and that p does not belong to any of the open discs
that these circles bound. Hence p /∈ D (see Figure 11).

Figure 11. The circle C homotopic to a point in K2.

Since p ∈ ω(γ), then the positive semi-trajectory γ+
p1

⊂ γ intercepts Σ at points
forming a sequence (pn)n∈N, where pn = γ(tn), (tn)n∈N is an increasing sequence of
real numbers and pn → p as n→ ∞.

Consider the closed curves

Cn = [pn, pn+1]γ ∪ [pn, pn+1]Σ, n = 1, 2, . . . .
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We assert that Cn is two-sided for each n ∈ N. Indeed, suppose, by contradiction,
there exists n0 ≥ 2 such that Cn0

is a one-sided curve. Then we have the following
possibilities:

(a) there exists n > n0 such that Cn is a two-sided curve;
(b) Cn is a one-sided curve for all n ≥ n0.

Note that case (a) cannot occur, because otherwise Cn would be a
semi-transversal circle non-homotopic to a point in K2 and this contradicts our
assumption.

We will show that (b) does not hold as well. If (pn)n∈N is not a monotone sequence
in Σ, then γ+

p1
⊂ γ intercepts Σ at three points which are non-consecutive. Then we

can construct a semi-transversal circle to X through γ at these points, which is not
homotopic to a point in K2, and this contradicts our assumption. Thus (pn)n∈N is
a sequence which is necessarily monotone. On the other hand, by Lemma 3.3, there
are only two disjoint one-sided curves on the Klein bottle K2. Hence there is no
n0 ≥ 2 such that Cn0

is one-sided.
By the assertion we just proved and from the assumption that all semi-transversal

circles to X through γ are homotopic to a point in K2, it follows that (pn)n∈N is a
monotone sequence in Σ. Consequently, ω(γ) ∩ Σ = p and then, by the arbitrary
choice of p ∈ ω(γ), this implies there exists a unique trajectory of X through p and
contained in ω(γ), since otherwise there would exist two distinct points of ω(γ) in
the same transversal segment and, as a consequence, we would be able to construct
a semi-transversal circle to X through γ and non-homotopic to a point in K2.

Now, if ω(γ) contains a periodic orbit, it follows from Proposition 3 and from the
fact that the torus is an orientable double covering of the Klein bottle that ω(γ) is
a periodic orbit.

Suppose ω(γ) does not contain any periodic orbit. Then all trajectories of X
in ω(γ) are injective. Then, by Proposition 4, ω(γ) is a graph and the proof is
complete.

4. Appendix. Let M be a bidimensional compact manifold and let X ∈ X(M) be
a continuous vector field. By F we mean the set of all singularities of X , where F
may be finte or infinite. In this setting, we have the following result.

Proposition 5. Under the above conditions, there exists a continuous vector field

Y ∈ X(M) whose set of singular points is F and such that:

(i) Y and X have the same phase portrait;

(ii) all trajectories of Y are regular except for the trajectories which are singular

points.

Proof. By Proposition 3.2 of [7], there exists a family {Mn}n∈N of compact subsets
of M such that

⋂
∞

n=1Mn = F , where M1 = M and Mn+1 ⊂ Int(Mn), for all n ∈ N.
Let us define Vn = Int(Mn) \Mn+2, n ∈ N. Clearly {Vn}n∈N is a locally finite open
cover of M \ F . Let {ψn : M \ F → [0, 1] : n ∈ N} be a partition of unity strictly

subordinate to this cover. For each n ∈ N, we extend ψn to a continuous map ψ̃n

in M identifying ψ̃n(p) = 0 for every p ∈ F . In this manner, each ψ̃nX belongs to
X(M).

Let ρ0 = 1, ρ1 = 1 and

ρn = dist(Mn+2,M \Mn) := inf{d(p, q) : p ∈Mn+2, q ∈M \Mn},
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for n = 2, 3, . . . , where d(. , .) denotes the Riemannian metric in M . Let ‖.‖ denote
the norm defined by this metric. For each n ∈ N, we choose a positive real number
cn such that

‖cnψ̃nX‖ < min
{ 1

2n
,
ρn−1

3
,
ρn

3
,
ρn+1

3

}
.

Since
∞∑

n=1

‖cnψ̃nX‖ ≤

∞∑

n=1

1

2n
<∞,

the series
∑

∞

n=1 cnψ̃nX converges to a continuous vector field Y ∈ X(M) as required
in (i).

It remains to prove that Y satisfies (ii). But, for each n = 2, 3, . . ., we have
∥∥∥∥∥∥

(
∞∑

n=1

cnψ̃nX

)∣∣∣∣∣
Vn

∥∥∥∥∥∥
=

∥∥∥∥
(
cn−1ψ̃n−1X + cnψ̃nX + cn+1ψ̃n+1X

)∣∣∣
Vn

∥∥∥∥

≤ ‖cn−1ψ̃n−1X‖ + ‖cnψ̃nX‖ + ‖cn+1ψ̃n+1X‖

≤ ρn.

And this implies ‖Y |Vn
‖ ≤ ρn.

Let γ be a trajectory of Y such that γ(0) ∈ M \Mn and γ(τ) ∈ Mn+2, where
τ > 0 and n = 2, 3, . . .. Then

ρn ≤ ‖γ(τ) − γ(0)‖ =

∥∥∥∥
∫ τ

0

γ′(s)ds

∥∥∥∥ =

∥∥∥∥
∫ τ

0

Y (γ(s))ds

∥∥∥∥ ≤ τρn.

Thus τ ≥ 1, whenever γ(0) ∈ M \Mn and γ(τ) ∈ Mn+2, for each n = 2, 3, . . ..
Therefore we can conclude that γ attains a singularity only at infinity by the defi-
nition of F , since Mn+1 ⊂ Int(Mn), for all n ∈ N. This proves (ii).
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[5] K. Ciesielski, The Poincaré-Bendixson theorems for two-dimensional semiflows, Topol. Meth-
ods Nonlinear Anal., 3 (1994), 163–178.

[6] C. Godbillon, “Dynamical Systems on Surfaces,” Springer-Verlag, New York, 1983.
[7] C. Gutierrez, Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory

Dynam. Systems, 6 (1986), 17–44.
[8] C. Gutierrez, Structural stability for flows on the torus with a cross-cap, Trans. Amer. Math.

Soc., 241 (1978), 311–320.
[9] F. Haas, Poincaré-Bendixson type theorems for two-dimensional manifolds different from the

torus, Ann. of Math., 59 (1954), 292–299.
[10] O. Hajek, “Dynamical Systems in the Plane,” Academic Press, New York, 1968.
[11] P. Hartman, “Ordinary Differential Equations,” John Wiley and Sons, Inc., New York, 1964.
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