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1. Introduction

Discontinuous semidynamical systems are a natural generalization of classical dynamical systems. Systems which admit
abrupt perturbations, called impulses,maypresentmany interesting andunexpected phenomena such as ‘‘beating’’, ‘‘dying’’,
‘‘merging’’ and ‘‘noncontinuation of solutions’’ and many real world problems can be modelled by such systems. For details
about this theory, see [1–10], for instance.
Some classical concepts in dynamical systems as recursiveness, Poisson stability, non-wandering points and minimal

sets are considered in [11]. Among these concepts, important results are due to Birkhoff [12], Nemyckiı̆ and Stepanov [13],
Hájek [14], Bhatia and Szegö [11]. On the other hand, many of these concepts are not yet specified for discontinuous
semidynamical systems.
In the first part of the present paper, we give a brief overview of the basis of the theory of impulsive semidynamical

systems. The second part of the paper concerns the main results. We present the concept of (positive) Poisson stability for
impulsive semidynamical systems. Then we give some characterizations of positively Poisson stable points of this system
(see Theorem 3.1 in what follows). We also state conditions to a positively Poisson stable point to be periodic (Theorem 3.2).
An important result in classical dynamical systems concerns positively Poisson stable points whose orbits differ from their
limit sets. We generalize this result for discontinuous systems in Theorem 3.3. In addition, we present the concept of non-
wandering points and we establish conditions so that the set of positively Poisson stable points is dense in the space where
the impulsive semidynamical system is defined (see Theorem 3.6).
The reader may find another kind of recursive properties for impulsive semidynamical systems in [9].

2. Definitions and notations

Let X be a metric space and R+ be the set of non-negative real numbers. The triple (X, π,R+) is called a semidynamical
system, if the function π : X× R+ −→ X is continuous with π(x, 0) = x and π(π(x, t), s) = π(x, t + s), for all x ∈ X and
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t, s ∈ R+. We denote such a system by (X, π, R+) or simply (X, π).When R+ is replaced by R, the triple (X, π, R) is a
dynamical system. For every x ∈ X, we consider the continuous function πx : R+ −→ X given by πx(t) = π(x, t) and we
call it themotion of x.
Let (X, π) be a semidynamical system. Given x ∈ X, the positive orbit of x is given by π+(x) = {π(x, t) : t ∈ R+}. For

t ≥ 0 and x ∈ X, we define F(x, t) = {y ∈ X : π(y, t) = x} and, for4 ⊂ [0,+∞) and D ⊂ X, we define

F(D,4) =
⋃
{F(x, t) : x ∈ D and t ∈ 4}.

Then a point x ∈ X is called an initial point, whenever F(x, t) = ∅ for all t > 0.
An impulsive semidynamical system (X, π;M, I) consists of a semidynamical system, (X, π), a non-empty closed subset

M of X such that for every x ∈ M, there exists εx > 0 such that

F(x, (0, εx)) ∩M = ∅ and π(x, (0, εx)) ∩M = ∅,

and a continuous function I : M → X which is responsible for the jumps or discontinuities of the trajectories of the
semidynamical system. We also define

M+(x) = (π+(x) ∩M) \ {x},

for x ∈ X.
Given an impulsive semidynamical system (X, π;M, I) and x ∈ X, we define the function φ : X→ (0,+∞] as follows

φ(x) =
{
s, if π(x, s) ∈ M and π(x, t) 6∈ M for 0 < t < s,
+∞, if M+(x) = ∅.

This means that φ(x) is the least positive time at which the trajectory of xmeets M. Thus for each x ∈ X, we call π(x, φ(x))
the impulsive point of x.
The impulsive trajectory of x in (X, π;M, I) is an X-valued function π̃x defined on the subset [0, s) of R+ (smay be+∞).

The description of such a trajectory follows by the following recurrence

π̃x(t) =
{
π(x, t), 0 ≤ t < s0
x+1 , t = s0,

where x+1 = I(x1), x1 = π(x, φ(x)), φ(x) = s0 (x = x
+

0 ) and

π̃x(t) =
{
π(x+n , t − tn), tn ≤ t < tn+1
x+n+1, t = tn+1,

where x+n+1 = I(xn+1), xn+1 = π(x
+
n , φ(x

+
n )), φ(x

+
n ) = sn and tn+1 =

∑n
i=0 si, n = 0, 1, 2, . . . .

For details about the structure of these types of impulsive semidynamical systems, the reader may consult [1,2,4,5,8].

2.1. Semicontinuity and continuity of φ

The result of this section is borrowed from [1]. It concerns the functionφ defined previouslywhich indicates themoments
of impulse action of a trajectory in an impulsive system.
Let (X, π) be a semidynamical system. Any closed set S ⊂ X containing x (x ∈ X) is called a section or a λ-section through

x, with λ > 0, if there exists a closed set L ⊂ X such that

(a) F(L, λ) = S;
(b) F(L, [0, 2λ]) is a neighborhood of x;
(c) F(L, µ) ∩ F(L, ν) = ∅, for 0 ≤ µ < ν ≤ 2λ.

The set F(L, [0, 2λ]) is called a tube or a λ-tube and the set L is called a bar. Let (X, π) be a semidynamical system. We now
present the conditions TC and STC for a tube.
Any tube F(L, [0, 2λ]) given by a section S through x ∈ X such that S ⊂ M ∩ F(L, [0, 2λ]) is called TC-tube on x. We say

that a point x ∈ M fulfills the Tube Condition and wewrite (TC), if there exists a TC-tube F(L, [0, 2λ]) through x. In particular,
if S = M ∩ F(L, [0, 2λ])we have an STC-tube on x and we say that a point x ∈ M fulfills the Strong Tube Condition (we write
(STC)), if there exists an STC-tube F(L, [0, 2λ]) through x.
The following theorem concerns the continuity of φ which is accomplished outside M for M satisfying the condition TC.

See [1], Theorem 3.8.

Theorem 2.1. Consider an impulsive semidynamical system (X, π;M, I). Assume that no initial point in (X, π) belongs to the
impulsive set M and that each element of M satisfies the condition (TC). Then φ is continuous at x if and only if x 6∈ M.

2.2. Additional definitions

Let us consider a metric space X with metric ρ. By B(x, δ)we mean the open ball with center at x ∈ X and ratio δ. Given
A ⊂ X, diam(A) = sup{ρ(a, b) : a, b ∈ A}.
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In what follows, (X, π;M, I) is an impulsive semidynamical system and x ∈ X.
We define the limit set of x in (X, π;M, I) by

L̃
+
(x) = {y ∈ X : π̃(x, tn)

n→+∞
−→ y, for some sequence tn

n→+∞
−→ +∞}.

For each x ∈ X, the set L̃
+
(x) is closed [8, Remark 1].

The prolongational limit set of x in (X, π;M, I) is given by

J̃
+
(x) = {y ∈ X : π̃(xn, tn)

n→+∞
−→ y, for xn

n→+∞
−→ x and tn

n→+∞
−→ +∞}.

If π̃+(A) ⊂ A, we say that A is positively π̃-invariant.
A point x ∈ X is called stationary or rest point with respect to π̃ , if π̃(x, t) = x for all t ≥ 0, it is a periodic point with

respect to π̃ , if π̃(x, t) = x for some t > 0 and x is not stationary, and x is an eventually periodic point with respect to π̃ , if a
point π̃(x, t) is periodic for some t ≥ 0. We say that π̃+(x), x ∈ X, is eventually periodic if π̃(x, t) is an eventually periodic
point for each t ≥ 0.
Given x ∈ X, we denote T (x) by

∑
∞

i=0 φ(x
+

i ).

3. The main results

In this section, we present some results which concern recursivemotions.We shall consider an impulsive semidynamical
system (X, π;M, I), where the following additional hypotheses hold:

• No initial point in (X, π) belongs to the impulsive set M, that is, given x ∈ M there are y ∈ X and t ∈ R+ such that
π(y, t) = x.
• Each element of M satisfies the condition (STC) (consequently, φ is continuous on X \M, see [1]).
• M ∩ I(M) = ∅.
• For each x ∈ X, the motion π̃(x, t) is defined for every t ≥ 0, i.e. [0,+∞) denotes the maximal interval of definition of
π̃x. By following [8], the impulsive systems where the motion π̃(x, t) is defined for all t ≥ 0 are the most important and
interesting, and, moreover, in many cases wemay restrict ourselves to such systems (because of the existence of suitable
isomorphisms), due to the paper [3].

We start by introducing the concept of recursiveness for an impulsive semidynamical system.

Definition 3.1. Let (X, π;M, I) be an impulsive semidynamical system. A subset U ⊂ X is said to be positively π̃-recursive
with respect to a subset V ⊂ X if for each T ≥ 0 there are a time t > T and an element x ∈ V such that π̃(x, t) ∈ U . We say
that U is self-positively π̃-recursive, whenever it is positively π̃-recursive with respect to itself.

Consider the impulsive differential system in R2 given by{
ẋ1 = −x1, ẋ2 = −x2, (x1, x2) 6∈ M
I : M→ N (1)

where the sets M,N ⊂ R2 are defined by M = {(x1, x2) ∈ R2 : x21 + x
2
2 = 4} and N = {(x1, x2) ∈ R2 : x21 + x

2
2 = 1}

and the impulse function I assigns to every point x ∈ M a point y ∈ N which is on the ray joining x to the origin in R2. The
trajectories of this system are presented in Fig. 1. Any neighborhood of the origin is positively π̃-recursive with respect to
a given subset V of R2. In particular, any neighborhood of the origin is self-positively π̃-recursive. Note that the origin is an
attractor.
Next, we define (positive) Poisson stability for an impulsive semidynamical system.

Definition 3.2. Let (X, π;M, I) be an impulsive semidynamical system. A point x ∈ X is said to be positively Poisson π̃-
stable if every neighborhood of x is positively π̃-recursive with respect to {x}.

In the previous example, the origin (rest point) of system Eq. (1) is the only point in R2 which is positively Poisson π̃-
stable. It is easy to see that rest points and periodic orbits are positively Poisson π̃-stable.
Before giving some characterizations of positively Poisson π̃-stable points, we present an auxiliary result which

characterizes the closures of trajectories of an impulsive system.

Lemma 3.1. Let (X, π;M, I) be an impulsive semidynamical system and x ∈ X. Suppose φ(x+j ) <∞ for every j = 0, 1, 2, . . . .
Then,

π̃+(x) = π̃+(x) ∪ L̃+(x) ∪ {xj : j = 1, 2, . . .},

where xj = π(x+j−1, φ(x
+

j−1)), j = 1, 2, . . . , and π̃
+(x) is the positive orbit of x with respect to π̃ . Note that if φ(x+j ) < +∞,

j = 0, . . . , k and φ(x+k+1) = +∞ then π̃+(x) = π̃
+(x) ∪ L̃+(x) ∪ {xj : j = 1, 2, . . . , k+ 1}.
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M

N

x2

x1

Fig. 1. Any neighborhood of the origin is self-positively π̃-recursive.

Proof. It is enough to show that π̃+(x) ⊂
(
π̃+(x) ∪ L̃+(x) ∪ {xj : j = 1, 2, . . .}

)
.

Let y ∈ π̃+(x) be arbitrary. Then there exists a sequence {wn}n≥1 ⊂ π̃+(x) such that

wn
n→+∞
−→ y.

Since {wn}n≥1 ⊂ π̃+(x), we have wn = π̃(x, tn) for each n = 1, 2, 3, . . . , where {tn}n≥1 is a sequence of positive real
numbers. We may assume that

lim
n→+∞

tn = +∞ or lim
n→+∞

tn = a < +∞,

becausewn
n→+∞
−→ y.

Suppose tn
n→+∞
−→ +∞. Then y ∈ L̃+(x) and the inclusion holds.

Now, suppose the sequence {tn}n≥1 converges to some real number a.Wediscuss twopossibilities:when a =
∑m
j=0 φ(x

+

j )

for somem = 0, 1, 2, . . . , and when a 6=
∑m
j=0 φ(x

+

j ) for everym = 0, 1, 2, . . . .
Suppose a =

∑m
j=0 φ(x

+

j ) for some m = 0, 1, 2, . . . . If there exists a subsequence {tnk}k≥1 of {tn}n≥1 such that tnk < a,
k = 1, 2, . . . , then there is an integer N1 > 0 such that

π̃(x, tnk) = π(x
+

m, tnk), for nk > N1,

where tnk =
∑m−1
j=0 φ(x

+

j )+ tnk , 0 ≤ tnk < φ(x+m) and tnk
nk→+∞
−→ φ(x+m). Thus,

π̃(x, tnk) = π(x
+

m, tnk)
nk→+∞
−→ π(x+m, φ(x

+

m)) = xm+1
which means that y = xm+1.
If tnk = a for infinitely many k, it is obvious.
On the other hand, if there is no such tnk that tnk ≤ a for each k = 1, 2, . . . , then there is an integer N2 > 0 such that

π̃(x, tnk) = π(x
+

m+1, tnk), for nk > N2,

where 0 ≤ tnk < φ(x+m+1) and tnk
nk→+∞
−→ 0. Consequently,

π̃(x, tnk)
n→+∞
−→ x+m+1,

that is

y = x+m+1 ∈ π̃
+(x).

But, if a 6=
∑m
j=0 φ(x

+

j ) for everym = 0, 1, 2, . . . , then 0 ≤ a < φ(x) or there is an integer ` ≥ 0 such that
∑`
j=0 φ(x

+

j )

< a <
∑`+1
j=0 φ(x

+

j ). Let us assume the latter. Then there is an integer N3 > 0 such that

π̃(x, tn) = π(x+`+1, t̂n), for n > N3,

where 0 ≤ t̂n < φ(x+`+1) and t̂n
n→+∞
−→ a−

∑`
j=0 φ(x

+

j ) := â < φ(x+`+1).
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Since

π(x+`+1, t̂n)
n→+∞
−→ π(x+`+1, â) ∈ π̃

+(x),

we conclude that y = π(x+`+1, â) ∈ π̃
+(x) and the theorem is proved. �

Remark 3.1. In [10], Kaul considers an impulsive semidynamical system (Ω, π̃), where Ω ⊂ X is an open set in a metric
space X and the continuous impulse operator I is defined on the boundary ∂Ω ofΩ in X and takes values inΩ . He proves that
π̃+(x) = π̃+(x)∪ L̃+(x) for each x ∈ Ω (see [10, Lemma 2.10]). This equality does not involve the elements xj, j = 1, 2, . . . ,
because the phase space of (Ω, π̃) does not contain the points {xj : j = 1, 2, 3, . . .}.

Now, wemention an important lemma that will be very useful later in this paper. This lemmawas proved by Kaul in [10]
for impulsive semidynamical systems of type (Ω, π̃) (see Lemma 2.3 there). However, this result still holds for impulsive
systems of the form (X, π;M, I). See [5, Lemma 3.2].

Lemma 3.2. Given an impulsive semidynamical system (X, π;M, I), where X is a metric space, supposew ∈ X \M and {zn}n≥1
is a sequence in X which converges to the point w. Then, for any t ∈ [0, T (w)), there exists a sequence of real numbers {εn}n≥1,
with εn

n→+∞
−→ 0, such that t + εn < T (zn) and π̃(zn, t + εn)

n→+∞
−→ π̃(w, t).

In Lemma 3.2, when π̃(w, t) 6= w+j for every j = 1, 2, 3, . . . , the convergence π̃(zn, t + εn)
n→+∞
−→ π̃(w, t) does not

depend on the sequence {εn}n≥1, that is, π̃(zn, t)
n→+∞
−→ π̃(w, t), whenever t 6=

∑k
j=0 φ(w

+

j ) for every k = 0, 1, 2, . . . .We
show this fact in the next lemma.

Lemma 3.3. Given an impulsive semidynamical system (X, π;M, I), where X is a metric space, suppose w ∈ X \ M and
{zn}n≥1 is a sequence in X which converges to w. Then, for any t such that t 6=

∑k
j=0 φ(w

+

j ), k = 0, 1, 2, . . . , we have

π̃(zn, t)
n→+∞
−→ π̃(w, t).

Proof. Sincew ∈ X \M , there is η > 0 such that B(w, η) ∩M = ∅. By the convergence of the sequence {zn}n≥1, there is an
integer N > 0 such that zn ∈ B(w, η) for all n > N . From the continuity of φ on X \M , we have

φ(zn)
n→+∞
−→ φ(w).

Suppose 0 ≤ t < φ(w). Then given ε < φ(w)− t , there exists N1 > N such that |φ(zn)−φ(w)| < ε, for all n > N1, that
is,

φ(zn) > −ε + φ(w) > t, for n > N1.

Then, since π̃(zn, t) = π(zn, t) for n > N1, π̃(w, t) = π(w, t) and π(zn, t)
n→+∞
−→ π(w, t), we have

π̃(zn, t)
n→+∞
−→ π̃(w, t).

Now, suppose φ(w) < t < φ(w)+ φ(w+1 ). Since t − φ(w) > 0, there is N2 > N such that |φ(zn)− φ(w)| < t − φ(w)
for all n > N2. Then

φ(zn) < t, for all n > N2.

We claim that t −φ(zn) < φ((zn)+1 ) for a sufficiently large n. Indeed. Since 0 < t −φ(w) < φ(w+1 ), there is ε1 > 0 such
that

]t − φ(w)− ε1, t − φ(w)+ ε1[ ∩]φ(w+1 )− ε1, φ(w
+

1 )+ ε1[= ∅.

Also, since φ(zn)
n→+∞
−→ φ(w), there exists N3 > N such that

t − φ(zn) ∈]t − φ(w)− ε1, t − φ(w)+ ε1[, for n > N3.

On the other hand, since w+1 6∈ M (M ∩ I(M) = ∅), there is an η1 > 0 such that B(w
+

1 , η1) ∩ M = ∅. Because I is a

continuous function, we have (zn)+1
n→+∞
−→ w+1 . Then, by the continuity of φ on B(w

+

1 , η1), we also have φ((zn)
+

1 )
n→+∞
−→

φ(w+1 ). Thus there exists N4 > N such that

φ((zn)+1 ) ∈]φ(w
+

1 )− ε1, φ(w
+

1 )+ ε1[, for n > N4.

Consequently

t − φ(zn) < φ((zn)+1 ),
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for n > max{N3,N4}. Then for n > max{N2,N3,N4}, we have

φ(zn) < t and t − φ(zn) < φ((zn)+1 ).

Hence, since π̃(zn, t) = π((zn)+1 , t − φ(zn)) for n > max{N2,N3,N4}, π̃(w, t) = π(w+1 , t − φ(w)) and π((zn)
+

1 , t −

φ(zn))
n→+∞
−→ π(w+1 , t − φ(w)), we obtain

π̃(zn, t)
n→+∞
−→ π̃(w, t).

The above process can be continued by induction and the result follows. �

Remark 3.2. The general assumption that the motion π̃(x, t), x ∈ X, is defined for all t ≥ 0 is not important here and the
proof in more general case is the same as above.

Remark 3.3. In Lemma 3.3, the convergence π̃(zn, t)
n→+∞
−→ π̃(w, t)where t 6=

∑k
j=0 φ(w

+

j ), k = 0, 1, 2, . . . , is equivalent

to π((zn)+j , λ)
n→+∞
−→ π(w+j , λ) for each j = 0, 1, 2, . . . and 0 ≤ λ < φ(w+j ).

The next theorem characterizes positively Poisson π̃-stable points.

Theorem 3.1. Let (X, π;M, I) be an impulsive semidynamical system and x ∈ X \ M. Then the following statements are
equivalent:

1. x is positively Poisson π̃-stable;
2. Given a neighborhood U of x and T > 0, then π̃(x, t) ∈ U for some t > T ;
3. x ∈ L̃+(x);
4. π̃+(x) = L̃+(x);
5. π̃+(x) ⊂ L̃+(x);
6. For every ε > 0, there exists t ≥ 1 such that π̃(x, t) ∈ B(x, ε).

Proof. It is easy to see that (1)⇒ (2)⇒ (3) and (4)⇒ (5)⇒ (6)⇒ (1). Let us show that (3)⇒ (4).
We consider the case when φ(x+j ) < +∞ for each j = 0, 1, 2, . . . . By Lemma 3.1, π̃+(x) ⊇ L̃

+(x). Then it is enough to
prove the reverse inclusion.
Let y ∈ π̃+(x). Then π̃(x, λ) = y for some λ ≥ 0. Since x ∈ L̃+(x), there is a sequence {tn}n≥1, with tn

n→+∞
−→ +∞, such

that π̃(x, tn)
n→+∞
−→ x. Since x 6∈ M, by Lemma 3.2, there exists a sequence of real numbers {εn}n≥1, εn

n→+∞
−→ 0, such that

π̃(x, tn + εn + λ)
n→+∞
−→ π̃(x, λ) = y.

Thus y ∈ L̃+(x) because tn+εn+λ
n→+∞
−→ +∞. Hence π̃+(x) ⊂ L̃+(x) and since L̃+(x) is closed it follows that π̃+(x) ⊂ L̃+(x),

which completes the proof. �

Using Lemma 3.2, the next result follows straightforwardly.

Lemma 3.4. Let (X, π;M, I) be an impulsive semidynamical system and x ∈ X \ M. If x is positively Poisson π̃-stable, then
π̃(x, t) is positively Poisson π̃-stable for every t ≥ 0.

Theorem 3.2 below establishes necessary conditions for a positively Poisson π̃-stable point to be a periodic point.

Theorem 3.2. Let (X, π;M, I) be an impulsive semidynamical system and x ∈ X. Suppose π̃+(x) = ∪{π(x+j , [0, φ(x
+

j ))) : j =
0, . . . , k}, φ(x+k ) < +∞, and π̃(x

+

j , [0, φ(x
+

j ))) ∩ π̃(x
+

i , [0, φ(x
+

i ))) = ∅ for i 6= j, i, j = 1, . . . , k. If x is positively Poisson
π̃-stable, then x is a periodic point.

Proof. At first, let us note that

π̃(x+k , φ(x
+

k )) = x
+

k+1 ∈ π̃
+(x).

Since π̃+(x) = ∪{π(x+j , [0, φ(x
+

j ))) : j = 0, . . . , k} is an invariant set, φ(x
+

k ) < +∞ and T (x) = +∞, we conclude that
x+k+1 is a periodic orbit. Suppose x

+

k+1 6= x, then

π̃+(x) = π̃(x, [0, ν)) ∪ π̃+(x+k+1) for some 0 < ν < φ(x) (x+k+1 = π(x, ν))

or

π̃+(x) = π̃(x, [0, φ(x)+ · · · + φ(x+`−1)+ λ)) ∪ π̃
+(x+k+1)

for some 0 ≤ λ < φ(x+` )where ` is some integer in {1, 2, . . . , k} (x
+

k+1 = π(x
+

` , λ)).
Therefore x 6∈ L̃+(x)which is a contradiction because x is positively Poisson π̃-stable. Thus x+k+1 = x and x is periodic. �
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In [13], Nemyckiı̆ and Stepanov established an important result about positively Poisson stable points x ∈ X such that
π+(x) 6= L+(x) (see also [11]). We extend this result for the impulsive case in the next theorem.

Theorem 3.3. Let (X, π;M, I) be an impulsive semidynamical system and suppose X is a complete metric space. Let x ∈ X \M
be positively Poisson π̃-stable and not an eventually periodic point. Then the set L̃+(x)− π̃+(x) is dense in L̃+(x).

Proof. Let z ∈ L̃+(x) and ε > 0 be arbitrary. Then there is a monotone sequence {tn}n≥1, tn
n→+∞
−→ +∞ such that

π̃(x, tn)
n→+∞
−→ z.

Choose τ1 > t1 such that π̃(x, τ1) ∈ B(z, ε) (which exists as x is positively Poisson π̃-stable). Then π̃(x, τ1) 6∈ π̃(x, [0, t1])
(otherwise either x would be an eventually periodic point), consequently π̃(x, τ1) 6∈ π̃(x, [0, t1]), according to the
assumption that M is disjoint from I(M). Thus, there exists ε1 > 0, with ε1 < ε

2 , such that

B(π̃(x, τ1), ε1) ⊂ B(z, ε) and B(π̃(x, τ1), ε1) ∩ π̃(x, [0, t1]) = ∅.

By Lemma 3.4, π̃(x, τ1) is positively Poisson π̃-stable. Thus we can choose τ2 > t2 such that

π̃(x, τ2) ∈ B(π̃(x, τ1), ε1).

Since π̃(x, τ2) 6∈ π̃(x, [0, t2]) (we use the same argument done above), there exists ε2 > 0, with ε2 <
ε1
2 , such that

B(π̃(x, τ2), ε2) ⊂ B(π̃(x, τ1), ε1) and B(π̃(x, τ2), ε2) ∩ π̃(x, [0, t2]) = ∅.

Continuing with this process, we obtain τn > tn and 0 < εn <
εn−1
2 , for n = 3, 4, . . . , such that

B(π̃(x, τn), εn) ⊂ B(π̃(x, τn−1), εn−1) and B(π̃(x, τn), εn) ∩ π̃(x, [0, tn]) = ∅.

The sequence {π̃(x, τn)}n≥1 has the property that

d(π̃(x, τn), π̃(x, τn−1)) < εn−1 ≤
ε

2n−1

for n = 2, 3, . . . . Thus {π̃(x, τn)}n≥1 is a Cauchy sequence which converges to a pointw in X. Since τn
n→+∞
−→ +∞, we have

w ∈ L̃+(x). Note also thatw ∈ B(z, ε).
Now, we claim that w 6∈ π̃+(x). Suppose the contrary, that is, w = π̃(x, λ) for some λ ≥ 0. Note that there is a natural

number n such that tn > λ and

w ∈ π̃(x, [0, tn]).

However, by constructionw ∈ B(π̃(x, τn), εn), for all n = 1, 2, . . . , and B(π̃(x, τn), εn) ∩ π̃(x, [0, tn]) = ∅. Thus we have a
contradiction. Hencew 6∈ π̃+(x) and the theorem is proved. �

The next result follows straightforward from Theorem 3.3.

Theorem 3.4. Let (X, π;M, I) be an impulsive semidynamical system, where X is a complete metric space and x ∈ X \ M. If
π̃+(x) = L̃+(x) then π̃+(x) is eventually periodic.

Now, we introduce the concept of non-wandering points for impulsive systems. This concept for dynamical systems is
due to Birkhoff, [12].

Definition 3.3. Let (X, π;M, I) be an impulsive semidynamical system. A point x ∈ X is said to be non-wandering, if every
neighborhood U of x is self-positively π̃-recursive.

Theorem 3.5 below presents some properties of non-wandering points. The proof is analogous to the continuous case.
See, for instance, Theorems III.2.12, III.2.13 and III.2.14 from [11].

Theorem 3.5. Let (X, π;M, I) be an impulsive semidynamical system and x ∈ X.

(1) The following statements are equivalent:
(a) x is non-wandering;
b) x ∈ J̃+(x).

(2) Every y ∈ L̃+(x) is non-wandering.
(3) Let P ⊂ X be such that every y ∈ P is positively Poisson π̃-stable. Then every y ∈ P is non-wandering.

Given an impulsive semidynamical system (X, π;M, I), the set of positively Poisson π̃-stable points can be dense in X,
when some conditions are fulfilled. This result is presented next.
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Theorem 3.6. Let (X, π;M, I) be an impulsive semidynamical system, where X is a complete metric space. Suppose the following
conditions hold:

(a) Every x ∈ X is non-wandering;
(b) If π̃(U, t) ∩ U 6= ∅, with U ⊂ X open and t ≥ 0, then π̃(U, t) ∩ U contains an open subset.
(c) For V ⊂ X, diam(π̃(V , t)) ≤ diam(V ) whenever t ≥ 0.

Then the set of positively Poisson π̃-stable points is dense in X.

Proof. Let x ∈ X and ε > 0. At first, let us suppose that x 6∈ M. We can assume, without loss of generality, that B(x, ε) ∩
M = ∅. Let U0 = B(x, ε). Since x is a non-wandering point, there exists t1 > 1 such that

π̃(U0, t1) ∩ U0 6= ∅.

By condition (b), π̃(U0, t1) ∩ U0 contains an open subset. So let z1 ∈ π̃(U0, t1) ∩ U0 and choose ε1 < 1
2 such that

U1 = B(z1, ε1) ⊂ π̃(U0, t1) ∩ U0 and U1 ⊂ U0.

Since z1 is a non-wandering point, there exists t2 > 2 such that

π̃(U1, t2) ∩ U1 6= ∅.

As above, we can take z2 ∈ π̃(U1, t2) ∩ U1 and ε2 < 1
22
such that

U2 = B(z2, ε2) ⊂ π̃(U1, t2) ∩ U1.

Proceeding as before, given n ∈ N∗, there are tn > n and zn ∈ π̃(Un−1, tn)∩Un−1 such that Un = B(zn, εn) ⊂ π̃(Un−1, tn)
∩ Un−1, with εn < 1

2n . Since Un ⊃ Un+1, n = 0, 1, 2, . . . , we have Un ⊃ Un+1, n = 0, 1, 2, . . . .Moreover, since diam(Un)
n→+∞
−→ 0 and X is complete, we have ∩{Un : n = 0, 1, 2, . . .} is a singleton {y}with y ∈ U1 ⊂ U0.
Now, we claim that y is a positively Poisson π̃-stable point. Indeed. Since π̃(Un−1, tn) ∩ Un−1 is nonempty for each n

(because π̃(Un−1, tn) ∩ Un−1 is nonempty for each n) and y ∈ Un for all n = 0, 1, 2, . . . ,we have

ρ(π̃(y, tn), y) ≤ diam(π̃(Un−1, tn))+ diam(Un−1)

≤ 2diam(Un−1)
n→+∞
−→ 0,

and since tn
n→+∞
−→ +∞, it follows that y ∈ L̃+(y). Hence, there is y ∈ B(x, ε) such that y ∈ L̃+(y).

Now, suppose x ∈ M and let ε > 0 be given. Let λ > 0 be such that π̃(x, λ) = π(x, λ) ∈ B(x, ε). Let y = π̃(x, λ)
and ε1 > 0 be such that B(y, ε1) ⊂ B(x, ε) and B(y, ε1) ∩ M = ∅. By the previous case, there exists z ∈ B(y, ε1) such that
z ∈ L̃+(z). Consequently, z ∈ B(x, ε)with z ∈ L̃+(z).
Then the set of positively Poisson π̃-stable points is dense in X. �

Let X be a topological space, (X, π;M, I) be an impulsive semidynamical system and µ be a real-valued measure on X.
We say that µ is invariant with respect to π̃ if for every measurable subset A ⊂ X we have µ(A) = µ(π̃(A, t)) for all t ≥ 0.
We say that µ is a positive measure if µ(A) ≥ 0 for every measurable set A ⊂ X. And a positive measure µ is normalized if
µ(X) = 1. The proof of the next theorem follows as Theorem IX.1 in [15].

Theorem 3.7. Let (X, π;M, I) be an impulsive semidynamical system, whereX is a topological space which has a countable basis
of neighborhoods. Let µ be a normalized invariant measure on X. Then almost every point in X is positively Poisson π̃-stable, that
is if E denotes the set of points in X that are not positively Poisson π̃-stable, then µ(E) = 0.
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