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“Almost all aspects of life are engineered at the molecular
level, and without understanding molecules we can
only have a sketchy understanding of life itself.”

Francis Crick, What Mad Pursuit, 1988

Abstract
Classical connectionist models [3, 8, 11] are based upon a
simple description of the neuron taking into account the
presence of pre-synaptic cells and their synaptic potentials,
the activation threshold, and the propagation of an action
potential. Certainly, this is an impoverished explanation of
human brain characteristics [1, 9, 12]. In this paper, a
mechanism to generate a biologically plausible artificial
neural network model is presented [10], which is taken to be
closer to some of the human brain features. In such a
mechanism, the classical framework is redesigned in order to
encompass not only the “traditional” features but also labels
that model the binding affinities between transmitters and
receptors. This is accomplished by a restricted data set, which
explains the neural network behavior. In addition to feed-
forward networks, the present model also contemplates
recurrence in its architecture, which allows the system to have
re-entrant connections [2].

1 Introduction

The presented paper [10] departs from a classical
connectionist model and proposes a biologically
plausible neural network model. Such model is defined
by a restricted data set, which explains the neural
network behavior. Unlike other models, this one
introduces transmitter, receptor, and controller
variables in order to account for the binding affin ities
between neurons. The following feature set thus defines
the neurons:

N = {{w}, θ, g, T, R, C}
where w represents the connection weights, θ is the
neuron activation threshold, g stands for the activation
function, T symbolizes the transmitter, R the receptor,
and C the controller. θ, g, T, R, and C are part of the
genetic information. T, R, and C are the labels, absent
in other mo dels.

As stated in Ramón y Cajal’s principle of
connectional specificity, “nerve cells do not
communicate indiscriminately with one another” [6]. In

the presented model, each neuron is connected to
another neuron not only in relation to its connection
weight, activation threshold, and activation function,
but also in relation to its labels. Neuron i is only
connected to neuron j if there is binding affinity
between the transmitter of i and the receptor of j.
Binding affinity means compatible types, enough
amount of substrate, and compatible genes.

In addition, the coupling result of a transmitter T
with a receptor R generates a controller C, which can
act over other neuron connections.

2 The Biological Support

The ordinary biological neuron has many dendrites
usually branched, which receive information from other
neurons, and an axon which transmits the processed
information, usually by propagation of an action
potential [1, 5]. The axon is divided into several
branches, which make synapses onto the dendrites and
cell bodies of other neurons. The nervous cells
influence others by (a) excitation, that is, they
contribute to produce impulses on other cells, and (b)
inhibition, that is, they prevent the releasing of
impulses on other cells.

The predominant type of synapse in the mamma lian
brain is chemical, and operates through the releasing of
a transmitter substance from the pre-synaptic to the
post-synaptic terminal [5-7]. This release occurs in
active zones, inside pre-synaptic terminals. Certain
chemical synapses lack active zones, so synaptic
actions between these cells are slower and more
diffuse. The coupling result of a neurotransmitter with
a receptor makes the post-synaptic cell releases a
protein.

The synaptic contacts can be morphologically
classified in two basic types: type I and type II
synapses [1, 6]. Type I synapses seem to be excitatory
because they have larger membrane thickness on the
post-synaptic side, and the pre-synaptic process has
rounded synaptic vesicles, presumably containing
packets of neurotransmitter. Type II synapses seem to
be inhibitory because they have smaller and flattened



139

synaptic vesicles and the contact zone is usually
smaller than that of type I synapses.

This picture, however, can be much more
complicated than implied above. In the first place, the
action of a transmitter in the post-synaptic cell does not
depend on the chemical nature of the neurotransmitter,
but instead on the properties of the receptors with
which the transmitter binds. In some cases, it is the
receptor that determines whether a synapse is
excitatory or inhibitory, and whether an ion channel
will be activated directly by the transmitter or indirectly
through a second messenger [5, 6].

Secondly, instead of propagating an action
potential, an axon can produce a graded potential [1].
Because of attenuation, one should expect that this
form of information signaling does not occur over long
distances. These graded potentials can occur in another
level. For instance, an axon terminal that makes
synapse in a given cell can receive a synapse. The pre-
synaptic synapse can produce only a local potential
change, which is then restricted to that axon terminal.

In view of these biological facts, it was decided to
model two features. On the one hand, the binding
affinities between transmitters and receptors were
modeled through labels T and R.  On the other hand,
the role of the “second messenger,” the effects of
graded potential, and the protein released by the
coupling of transmitter and receptor were all mo deled
under only one label, the controller C.

3 The Roles of the Controller

Within the model, the controller can modify the
binding affinities between neurons, through three main
functions. Firstly, it can modify the degrees of affinity
of receptors. Secondly, it can modify the amount of
substrate (that is, the amount of transmitters and
receptors). Finally, it can modify the gene expression,
in the case of mutation. Let’s consider the biological
motivation for each of these functions in detail.

Degrees of affinity, at chemical synapses, are
related to the way receptors gate ion channels, through
which transmitter material enters the post-synaptic cell:
in direct gating, receptors produce relatively fast
synaptic actions, while in indirect gating, receptors
produce slow synaptic actions. These slower actions
often serve to modulate behavior [5] because they
modify the degrees of affinity of receptors.

In addition, modulation can be related to the action
of peptides. There are many distinct peptides, of several
types and shapes, that can act as neurotransmitters [4].
There are, however, reasons to suspect that peptides are

different from many conventional transmitters [1]:
peptides appear to “modulate” the synaptic function
instead of activating it; the action of peptides usually
appears to spread slowly and persist for some time,
much more than conventional transmitters; and in some
cases, peptides do not act where they were released, but
at some distant site.

As transmitters, peptides act at very restrict places,
display a slow rate of conduction, and do not sustain
the high frequencies of impulses. As neuromodulators
of the synaptic function, its activity is more intense.
The excitatory effects of substance P (a peptide) are
very slow in the beginning but longer in duration (more
than one minute) and cannot cause, per se, enough
depolarization to excite the cells. The effect, however,
is to make neurons more readily excited by other
excitatory inputs – a clear example of
“neuromodulation”. Controllers, in the model
presented, explain this function by modifying the
degrees of affinity of receptors.

An additional function of the controller is to
account for variation in the amount of substrate. In
biological systems, the acetylcholine (a
neurotransmitter) is spread over a short distance toward
the post-synaptic membrane and acts at the specific
receptor molecules in that membrane. Then, the
acetylcholine is enzymatically divided and part of it is
taken up again for synthesis of a new transmitter,
causing an increase in the amount of substrate. In this
model, the controller represents substrate increase by a
variable acting over the initial substrate amount.

The final function of the controller concerns gene
expression. It was shown that peptides are a second,
slower, means of communication between neurons –
which is more economical than using extra neurons for
this purpose. This second messenger, besides altering
the affinities between transmitters and receptors, can
regulate gene expression thereby endowing synaptic
transmission with long-lasting consequences [5]. In the
model, this is achieved by the modification of the
variable that represents gene expression. Consequently,
mutation can be accounted for in this model.

4 The Labels and Their Dynamic Behaviors

The aim of this paper is to present a more sophisticated
mathematical model of the neuron, through the
definition of a restrict data set, thus explaining the
behavior of a biologically plausible artificial neural
network. In this sense, it is important to define the
labels (T, R, and C) and their dynamic behaviors in the
following way, as stated in [10]:
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A. For the network genesis:
1. the specification of the number of layers;
2. the specification of the number of neurons in each

layer;
3. the definition of the initial amount of substrate

(transmitters and receptors) in each layer; and
4. the definition of the genetics of each layer (type of

transmitter and its degree of affinity, type of
receptor and its degree of affinity, and genes (name
and gene expression)).

B. For the evaluation of the controllers and how
they act:
1. the controllers can modify the degree of affinity of

receptors;
2. the controllers can modify the initial substrate

storage; and
3. the controllers can modify the gene expression

value (mutation).

It is expected that these specifications lead to an
artificial neural network displaying some distinctive
characteristics. In the first place, each neuron has a
genetic code (a set of genes plus a gene expression
controller). The controller can cause mutation , because
it can regulate gene expression.

Second, the substrate (amount of transmitter and
receptor) is defined by layer. Because substrate
amounts are limited, there is a chance that some post-
synaptic neurons, to which a certain pre-synaptic
neuron should be connected, will not be activated. Such
a network, then, can be seen as favoring clustering .

Third, the substrate increase is related to the gene
specified in the controller, because the synthesis of a
new transmitter occurs in the pre-synaptic terminal
(origin gene). The modification of the genetic code,
that is, mutation, as well as the modification of the
degree of affinity of receptors, however, is related to
the target gene. The reason is that the modulation
function of controller is better explained at some
distance of the emission of neurotransmitter, therefore
at the target.

5 A Network Simulation

In table 1, a data set for a five-layer network
simulation is presented. For the specifications
displayed in table 1, the network architecture and its
activated connections are shown in figure 1. For the
sake of simplicity, all degrees of affinity are set at 1
(the degree of affinity is represented by a real number
in the range [0..1]; so that the greater the degree of
affinity is the stronger the synaptic connection will be).

In figure 1, one can notice that every unit in layer 1
(the input layer) is linked to the first nine units in layer
2 (first hidden layer). The reason why not every unit in
layer 2 is connected to layer 1, although the receptor of
layer 2 has the same type of the transmitter of layer 1,
is that the amount of substrate in layer 1 is eight units.
This means that, in principle, each layer-1 unit is able
to connect to at most eight units. But controller 1, from
layer 1 to 2, incremented by 1 the amount of substrate
of the origin layer (layer 1). The result is that each layer
1 unit can link to nine units in layer 2. Observe that
from layer 2 to layer 3 (the second hidden layer) only
four layer-2 units are connected to layer 3, because also
of the amount of substrate of layer 3, which is 4.

Table 1. The data set for a five-layer network

layer 1 2 3 4 5
number of neurons 10 10 5 5 1
amount of substrate 8 10 4 5 2
type of transmitter 1 2 1 2 1
degree of affinity of
transmitter

1 1 1 1 1

type of receptor 2 1 2 1 2
degree of affinity of
receptor

1 1 1 1 1

genes (name/gene
expression)

abc/1 abc/1 abc/1
def/2

abc/1
def/2

def/
2

Controllers: 1/1-2: abc/s/abc/1
1/1-4: abc/e/abc/2
2/2-3: abc/a/def/0.5

(Controller syntax: number/origin layer-target layer :
og/t/tg/res , where og  = origin gene (name); t = type of
synaptic function modulation: a = degree of affinity, s =
substrate, e = gene expression; tg = target gene (name);
res = control result: for t = a → res = new degree of
affinity of receptor (target), for t = s → res = substrate
increasing (origin), for t = e → res = new gene expression
controller (target). The controllers from layer 2 to 5, from
layer 3 to 4, and from layer 4 to 5 are absent in this
simulation.)

As a result of the compatibility of layer-2
transmitter and layer-5 receptor, and the existence of
remaining unused substrate of layer 2, one could expect
that the first two units in layer 2 should connect to the
only unit in layer 5 (the output unit). However, this
does not occur because their genes are not compatible.
Although gene compatibility exists, in principle,
between layers 1 and 4, their units do not connect to
each other because there is no remaining substrate in
layer 1 and because controller 1 between layers 1 and 4
modified the gene expression of layer 4, making them
incompatible. The remaining controller has the effect of
modifying the degrees of affinity of receptors in layer 3
(target). Consequently, the connections between layers
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2 and 3 became weakened (represented by dotted
lines). Notice that, in order to allow connections, in
addition to the existence of enough amount of
substrate, the genes and the types of transmitters and
receptors of each layer must be compatible.

Fig. 1. A five-layer neural network for the data set in table 1.
In the bottom of the figure is the layer 1 (input layer)
and in the top is the layer 5 (output layer). Between
them, there are three hidden layers (layers 2 to 4)

Although the architecture shown in figure 1 is feed-
forward, recurrence, or re-entrance, is permitted in this
model. This kind of feedback goes along with Edelman
and Tononi’s “dynamic core” notion [2]. This up-to-
date hypothesis suggests that there are neuronal groups
underlying conscious experience, the dynamic core,
which is highly distributed and integrated through a
network of reentrant connections.

6 Conclusion

Nowadays, models of artificial neural networks are in
debt with human brain physiology. That is, for
mathematical simplicity reasons mainly, conventional
neural network models are too simple and thus lack
several biological features of the cerebral cortex. The
aim here is to present a biologically plausible artificial
neural network model [10], which seeks to be closer to
the human brain capacity, although only a few brain
features are considered. In this model, the possibility of
connections between neurons is related not only to
synaptic weights, activation threshold, and activation
function, but also to labels that embody the binding
affinities between transmitters and receptors. This type
of neural network would be closer to human
evolutionary capacity, since it purports to be a
genetically well-suited model of the brain. The recent

hypothesis of the “dynamic core” [2] is also
contemplated because this model allows reentrancy in
its architecture connections.
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