
Abstract-- Recent artificial neural network models lack many
physiological properties of the neuron (Rocha 1992; Rosa 2001).
Current learning algorithms are more oriented to
computational performance than to biological credibility. The
aim of this paper is to propose an artificial neural network
system, called Bio-Pred, to take care of natural language
processing word prediction, in a biologically inspired
connectionist approach. Instead of the well-known biologically
implausible back-propagation algorithm (Crick 1989;
Rumelhart, Hinton, and Williams 1986), a neurophysiologically
motivated one is employed (O’Reilly 1996) in a bi-directional
connectionist architecture to account for next word prediction
in natural language sentences. In addition, several features
concerning biological plausibility are also included, for instance,
distributed representations.
Comparisons are made between Bio-Pred and a system that
uses the same word representation and the same next word
prediction (Rosa 2002). The differences lie in the architecture
employed - bi-directional architecture versus simple recurrent
network (Elman 1990) - and in the learning algorithm - a
neurophysiologically inspired procedure versus the biologically
implausible back-propagation. The main contribution of Bio-
Pred is to make an attempt to restore biological inspiration of
current connectionist systems.

Keywords: natural language processing, biologically
motivated connectionist approach.

I. INTRODUCTION

Classical approaches to Natural Language Processing
systems that account for the next word prevision problem
often employ a simple recurrent connectionist architecture,
with local representations of the words at the input layer
(Elman 1993; Rohde and Plaut 1999). An improvement to
such approach is the distributed representation for the
words, adopted in Pred-DR (Rosa 2002), for the same next
word prediction problem, and the same simple recurrent
network structure, employing the biologically implausible
back-propagation algorithm. In this paper, it is proposed a
neurophysiologically inspired system called Bio-Pred,
regarding both the architecture employed and the training
algorithm used. Instead of the simple recurrent network,
initially proposed by Elman (1990), Bio-Pred employs a bi-
directional architecture. There is evidence that the cerebral
cortex is connected in a bi-directional way (O’Reilly and
Munakata 2000). In addition, electrical synapses are usually
bi-directional (Kandel, Schwartz, and Jessell 1995). Instead
of the back-propagation algorithm, Bio-Pred uses a more
biological motivated one. And, at last, the computational
efficiency and performance of Bio-Pred is compared to
Pred-DR.

Bio-Pred attempts to predict the next word in declarative
sentences presented sequentially one word at a time, giving
meaning to the units of the connectionist architecture by
means of distributed representations based on semantic
features (Hinton, McClelland, and Rumelhart 1986;
McClelland and Kawamoto 1986). This way, Bio-Pred is
able to generalize to new words without increasing the
number of processors in its architecture, provided that their
semantic features are supplied. In addition, in a
neuroscience standpoint, distributed representations seem to
be predominant in the cerebral cortex (O’Reilly and
Munakata 2000). The system learns to relate the input word
array to its possible next word, “remembering” the previous
words seen before in a semantically sound sentence. For
each input word, Bio-Pred gives, as outcome, a list of
probabilities of occurrence of next words in the sentence
context.

II. WHY BACK-PROPAGATION IS BIOLOGICALLY
IMPROBABLE?

The back-propagation algorithm is largely employed
nowadays as the most computationally efficient
connectionist supervised algorithm. In fact, it re-appeared in
1986 (Rumelhart, Hinton, and Williams 1986) getting the
mathematical model of the neuron limitations straightened
out. These limitations, regarding the linearly separable
functionality of the neuron, were demonstrated by Marvin
Minsky and Seymour Papert seventeen years before
(Minsky and Papert 1969).

But back-propagation is argued to be biologically
implausible (Crick 1989). The reason is that the supervised
training algorithm is based on the error back propagation,
that is, while the stimulus propagates forwardly, the error
(difference between the actual and the desired outputs)
propagates backwardly (figure 1). It seems that in the
cerebral cortex, the stimulus that is generated when a
neuron fires, crosses the axon towards its end in order to
make a synapse onto another neuron input (called dendrite).
Suppose that back-propagation occurs in the brain, the error
must have to propagate back from the dendrite of the post-
synaptic neuron to the axon and then to the dendrite of the
pre-synaptic neuron. It sounds unrealistic and improbable.
Researchers believe that the synaptic “weights” have to be
modified in order to make learning possible, but certainly
not in this way. It is expected that the weight change uses
only local information in the synapse where it occurs. That
is the reason why back-propagation seems to be so
biologically implausible.
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Figure 1. Schema showing the back-propagation algorithm (based
on O’Reilly and Munakata 2000).  The upper architecture displays
the stimulus propagation phase, which consists on the presentation
of the input at the input layer A, then the unidirectional propagation
to the hidden layer B and then to the output layer C, generating the

real output signals. So, the activation happens forwardly, in a
bottom-up way. The lower architecture shows the error back

propagation phase of the algorithm. After the propagation of the
stimulus, the error, that is, the difference between real output and
desired output, is propagated backwardly to the hidden and input

layers, correcting the synaptic weights of the connectionist
architecture. Notice that the architecture does not change: it is still
unidirectional bottom to up. It is the error signal that is propagated

top-down, not the stimulus.

It is expected that upcoming neural network models, which
originally represent the connectionist computational
paradigm inspired on the nervous system, restore the
pioneering work, when Warren McCulloch and Walter Pitts
published their paper on the mathematical modeling of the
nervous cell (McCulloch and Pitts 1943). Nowadays, neural
network models are considered biologically impoverished,
although computationally efficient. It has been proved that
neurophysiologically based systems can be computationally
as effective as current connectionist systems, or even better
(O’Reilly and Munakata 2000). The search for connectionist
training algorithms, which are biologically plausible and
computationally efficient, is the main motivation of this
paper.

Figure 2. The three-layer bi-directional connectionist architecture of
Bio-Pred. To the input layer A the words, represented by their

distributed microfeature arrays, are entered sequentially, one word
at a time, at their specific slot according to their syntactic category
(subject, verb, object, or complement). At the output layer C, the
predicted next word is shown in its specific slot also. Notice that
there is no place for the subject in the output layer, since no next
word could be a subject, considering the declarative sentences

belonging to the training set, which is the same of Pred-DR (Rosa
2002). The final unit of the output layer (numbered 61) represents

the end of sentence marker (eos).

III. THE BIO-PRED SYSTEM

Word prediction is considered an interesting Natural
Language Processing temporal problem to be approached
(Rohde 2002; Elman 1993; Rohde and Plaut 1999). In Bio-
Pred, as in Pred-DR (Rosa 2002), the words of a sentence
are input one at a time, at the input layer, in terms of their
semantic microfeature distributed representations
(McClelland and Kawamoto 1986). At the output layer, the
next word (in terms of semantic features too) in the sentence
context is supposed to be predicted. After checking all the
distributed microfeature dimensions, the system calculates
how much the actual output array is closer to a specific
word. Then, the “probability” of occurrence is given, based
on the distance between an average of active outputs and the
word itself. For more details about the lexicon employed
and the distributed representation adopted, see Rosa (2002).

A. The connectionist architecture
The architecture employed in Bio-Pred consists of three
layers, with 80 units in the input layer (to account for a
four-word sentence: 20 units for each distributed
representation of a word), and 61 units in the output layer,
corresponding to three words of 20 units each and one unit
for the end-of-sentence marker (figure 2). The words are
represented by the semantic microfeature codification
(McClelland and Kawamoto 1986), and this representation
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is distributed, in a sense that several units are used for
representing one word. As a matter of fact, distributed
representation is another issue considered important in a
system that intends to be biologically realistic (O’Reilly
1998).

B. The training algorithm
The learning procedure is inspired by the Recirculation
(Hinton and McClelland 1988) and GeneRec algorithms
(O’Reilly 1996), and uses the two phases notion (minus and
plus phases – figure 3).

Minus phase

Plus phase

Figure 3: The two phases of the GeneRec algorithm (O’Reilly
1996). In the minus phase, when the input is presented to the input
layer A, there is a propagation of these stimuli to the hidden layer.
Then, a hidden minus signal is generated based on the inputs and

the previous output stimuli (equation 1). Then, these hidden signals
propagate to the output layer C, and an actual output is obtained

(equation 2). In the plus phase, the inputs are presented to the input
layer again; there is the propagation to the hidden layer. After this,
the desired outputs are presented to the output layer and propagated

back to the hidden layer, and a hidden plus signal is generated
(equation 3), based on the inputs and on desired outputs. Recall that
the architecture is bi-directional, so it is possible for the stimuli to

propagate either forwardly or backwardly.

First of all, the inputs xi are presented to the input layer. In
the minus phase, there is a propagation of these stimuli to
the output through the hidden layer (bottom-up
propagation). There is also a propagation of the previous
actual output ok back to the hidden layer (top-down
propagation). Then, the hidden minus activation hj

- is
generated (sum of the bottom-up and top-down
propagations – through the sigmoid activation function,
represented by σ in equation 1). The wij represents the
synaptic weights between input and hidden layers, while wjk
represents the weights between hidden and output layers.
Finally, the current real output ok is generated through the
propagation of the hidden minus activation to the output
layer (equation 2).
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In the plus phase, there is a propagation from the input xi to
the hidden layer (bottom-up). After this, there is the
propagation of the desired output yk to the hidden layer (top-
down). Then the hidden plus activation hj

+ is generated,
summing these two propagations (equation 3).
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In order to make learning possible, the synaptic weights w
are updated, based on xi, hj

-, hj
+, ok, and yk, in the way

represented in equations 4 and 5. Notice the presence of the
learning rate (η), considered an important variable during
the experiments.
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C. Bio-Pred and Pred-Dr Comparisons
It was deployed two versions of Bio-Pred, Bio-Pred1 and
Bio-Pred2. In both systems, the maximum acceptable error
e is set to 0.02. The learning rate η is 0.25 and the hidden
layer has 20 units. To Bio-Pred1 was given 24,000 training
cycles, after which the system is supposed to have learned
to predict the next word in declarative sentences. To Bio-
Pred2, 4,057 training cycles was enough for the system to
reach the error rate e. In addition to these biologically
motivated systems, the comparisons included the system
Pred-DR discussed earlier.
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Figure 4 shows the outcomes of the systems in relation to
the sentence the wolf frightened the girl.  When the user
enters the wolf, the system shows the next word frighten
with probability of 81.3% in Bio-Pred1, 62.8% in Bio-
Pred2, and 78.0% in Pred-DR. So, for the prediction the
next word in a sentence that begins with the wolf, it seems
that Bio-Pred1 has the greatest accuracy. Recall that a non-
human animate being (wolf) can hit, break, and even deliver
something. So, with only a word, it is very difficult to
predict what will be the next word in a sentence that may
occur in unconstrained contexts. When the user enters the
second word (frightened), it is expected that a better
performance would be displayed, since it is certainly easier
to predict what is the next word after the wolf frightened,
than in relation to the wolf only. So, Bio-Pred1 displays
82.6% for the girl, Bio-Pred2 shows 81.2%, and Pred-DR,
76.7%. Again, Bio-Pred1 seems to be more efficient. And
finally, when the girl is entered, all the versions show that
the next “word” should be the end-of-sentence marker, with
100% of certainty.

It has to be said that Bio-Pred1 is computationally more
efficient than the other systems (including the non-
biologically based Pred-DR) in relation to sentences
belonging to the class of sentences of which the wolf
frightened the girl is a member.
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Figure 4: Responses for the sentence The wolf frightened the girl in
two different implementations of Bio-Pred and Pred-DR. In Bio-

Pred1, there are 24,000 training cycles, for a learning rate η = 0.25,
20 hidden units. For Bio-Pred2, in order to reach the error rate  e =
0.02, it was necessary 4,057 training cycles, the same learning rate
(η = 0.25), and the same hidden layer. For Pred-DR, same learning

rate (η = 0.25), hidden and context layers with 20 units, and the
same output error rate (e = 0.02), which in this case, corresponds to
2,549 training cycles. Notice that the prediction for the next word

after girl is 100% correct, that is, the system predicts with no doubt
that the end of sentence marker is expected in this case. This can be

attributed to the fact that the verb frighten is normally a two
operand predicate (who frightens whom).

Figure 5 shows some possible next words for wolf in the
three presented systems. Notice that frighten is in the
second place in all systems, after hit in Bio-Pred1 and Pred-
DR, and after give in Bio-Pred2. Notice also that deliver and
give have lower values, as expected, in Bio-Pred1 and in

Pred-DR, but this is not true in Bio-Pred2, where give is the
most activated word. It seems that the number of training
cycles was not sufficient for the system map input word to
output next word, as it was in Bio-Pred1.

Figure 5. Responses to the input word wolf in the several systems.
The candidates for next word are shown among several verbs.

Finally, in figure 6 it is displayed the possible next word
after the phrase the wolf frightened. In this case, although all
the three system behaviors are similar, there is a difference
concerning the word wolf. While in Bio-Pred2 and in Pred-
DR wolf is displayed as the most highlighted word, in Bio-
Pred1 it is in the third place, after girl and chicken. So,
again, Bio-Pred1 seems to have learned better the word
prediction task than the other systems, including the non-
biologically based Pred-DR.

Figure 6. Responses to the input phrase wolf-frighten in the several
systems. The candidates for next word are shown among several

nouns.

The Bio-Pred versions are not so efficient with sentences
like the stone broke the vase. The verb break is not so easy
to process as frighten, since break may admit one, two, or
three operands. When the subject is non-animate like stone,
it is expected that break has one or, more often, two
operands like in the stone broke the vase. But, certainly this
necessity of decision may influence the system
performance, as shown in figure 7. In this case, break is
displayed with 66.1% of probability to be the next word
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after stone in Bio-Pred1, 74.5% in Bio-Pred2, and 84.9% in
Pred-DR.
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Figure 7: Responses for the sentence The stone broke the vase in
two different implementations of Bio-Pred and Pred-DR. Notice

that, in this case, the prediction for the next word after the last word
vase is less than 100% correct, that is, the system is not so sure

about the end of sentence marker. This can be attributed to the fact
that the verb break can be two or three operand predicate (who

breaks what or who breaks what with what).

The prediction for the second word break was 91.7% vase
in Bio-Pred1, 44.8% vase in Bio-Pred2, and 67.9% vase in
Pred-DR. This way, it seems that Bio-Pred1 shows better
performance in relation to the phrase the stone broke than
the other versions. Notice that because of the multi-
argument possibility of verb break, the end-of-sentence
marker is no longer predicted with 100% accuracy. Instead,
it showed probability of 66.2% in Bio-Pred1, 71.5% in Bio-
Pred2, and 83.8% in Pred-DR. It seems that, the end-of-
sentence marker is better predicted in a non-biologically
based system, at least regarding verbs with possibility of
different number of arguments.
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Figure 8. Responses to the input word stone in the several systems.
The candidates for next word are shown among several verbs.

When the user enters the word stone, some words are
highlighted as possible next words. Of course, this kind of
prediction depends on what the system sees during its
training step. Figure 8 shows the next word possibilities for
stone in the three systems discussed before. Notice that

break is expected more than other words in Bio-Pred2,
while it is in the third place of Bio-Pred1 and in the second
place in Pred-DR. Notice also that fear and love have lower
values, as expected, mainly in Bio-Pred2. Again, it seems
that a biologically based system has better performance than
Pred-DR, at least in relation to the unexpected next word
after stone.

Figure 9 shows the probable next words after the phrase the
stone broke. Notice that vase is more highlighted in Bio-
Pred1. As expected, monkey has a small percentage in Bio-
Pred1 and Pred-DR. It seems, again, that the number of
training cycles was not enough for the system Bio-Pred2
learn the correct relationship between the input and output
words, as it seems to happen with Bio-Pred1.
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Figure 9. Responses to the input phrase stone-broke in the several
systems. The candidates for next word are shown among several

nouns.

IV. CONCLUSIONS

      Bio-Pred is a connectionist natural language processing
system that account for the next word prediction in natural
language sentences presented one word at a time. Unlike
most systems, Bio-Pred adopts a biologically motivated
model, including a bi-directional architecture and a
physiologically plausible learning procedure. This way, it
tries to restore the neurophysiological inspiration of earlier
connectionist models.

     Several experiments were made to reach an architecture
that, in conjunction with an error-driven task learning
algorithm that resembles GeneRec (O’Reilly 1996), is able
to learn the prediction of next word for sentences presented
componentially one word at a time. It is important to notice
that the word representation is distributed, in the sense that
a set of units is used to represent one word. This is crucial in
a system, which aims to be neurophysiologically based. It is
presented also comparisons between Bio-Pred, deployed in
two versions, and a non-biologically based system called
Pred-DR. It is shown that Bio-Pred is computationally more
efficient than Pred-DR, at least in relation to the training set
employed.
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