Lipschitz Normal Embeddings in the Space of Matrices

Maria Aparecida Soares Ruas - ICMC-USP

Holomorphic Foliations and Singularities of Mappings and Spaces-MCA 2017, Montreal, July 2017

Maria Aparecida Soares Ruas Lipschitz Normal Embeddings in the Space Montreal, July 25-26, 2017 1 / 18

Introduction

Lipschitz normal embeddings in the space of matrices, Dmitry Kerner, Helge Moeller Pedersen, R., arXiv:1703.04520.

• Bilipschitz geometry of generic determinantal varieties

Recall that a map $f : X \rightarrow Y$, X and Y metric spaces is bilipschitz if f is a Lipschitz homeomorphism whose inverse is also Lipschitz.

< ロ > < 同 > < 回 > < 回 >

• (*X*, 0) germ of algebraic (analytic) variety over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , embedded in (\mathbb{K}^N , 0).

We can define two natural metrics on X.

• The outer metric

 $d_{out}(x,y) := ||x-y||_{\mathbb{K}^N}$

- i.e. the restriction of the Euclidean metric to (X, 0).
- The inner metric

 $d_{in}(x,y) := \inf_{\gamma} \left\{ length_{\mathbb{K}^N}(\gamma) \mid \gamma : [0,1] \to X, \gamma(0) = x, \ \gamma(1) = y \right\}.$ (1)

Both metrics are independent of the choice of the embedding up to bilipschitz equivalence.

Maria Aparecida Soares Ruas

Lipschitz Normal Embeddings in the Space

It is clear that

 $d_{out}(x, y) < d_{in}(x, y).$

The other direction is in general not true, and one says that

Definition

(X,0) is Lipschitz normally embedded (L.N.E.) if the outer and inner metrics are equivalent.

That is, if there exists a constant K > 0 such that

 $\frac{d_{in}(x,y)}{\kappa} \leq d_{out}(x,y).$

< ロ > < 同 > < 回 > < 回 >

4 / 18

Example

The plane curve $x^3 - y^2 = 0$ is not L.N.E.. In fact,

 $d_{out}(t^2, t^3), (t^2, -t^3)) = 2|t|^3$ and $d_{in}((t^2, t^3), (t^2, -t^3)) = 2|t|^2 + o(t^2).$

This implies that

$$\frac{d_{in}((t^2,t^3),(t^2,-t^3))}{d_{out}((t^2,t^3),(t^2,-t^3))}$$

is unbounded as $t \to 0$, hence there cannot exist a K as in the previous definition.

An irreducible complex plane curve is L.N.E. if and only if it is smooth.

Main result

Let $Mat_{m \times n}(\mathbb{K})$ be the space of $m \times n$ matrices over \mathbb{K} , $\mathbb{K} = \mathbb{R}$, \mathbb{C} .

Let $X \subset Mat_{m \times n}(\mathbb{K})$.

 $X_r := \{A \in X | \text{rank } A = r\}, \quad \overline{X}_r \text{ its topological closure}$

(Generic determinantal varieties)

When $X = Mat_{m \times n}(\mathbb{C})$, \overline{X}_r is an irreducible algebraic variety such that:

• cod
$$\overline{X}_r = (m-r)(n-r)$$

•
$$Sing(\overline{X}_r) = \overline{X}_{r-1}$$

• The decomposition $\overline{X}_r = \bigcup_{s \le r} X_s$ is a Whitney stratification.

(日)

Theorem

(Kerner, Pedersen, R.) Let X be one of the following sets:

- (1) $Mat_{m \times n}(\mathbb{K})$
- (2) $n \times n$ symmetric matrices over \mathbb{K}
- (3) $n \times n$ antisymmetric matrices over \mathbb{K} .

Then \overline{X}_r and X_r , $r \le m \le n$ are Lipschitz Normally Embedded.

< ロ > < 同 > < 回 > < 回 >

Properties of the varieties X_r and \overline{X}_r

- X_r and \overline{X}_r are *G*-invariant as follows: $X = Mat_{m \times n}(\mathbb{C}), \ G = U(m) \times U(n)$ and $X = Mat_{m \times n}(\mathbb{R}), \ G = O(m) \times O(n).$
- \overline{X}_r is a (metric) cone.
- The local structure of \overline{X}_r and the *controlled path-connectedness* of the connected components of X_r .

・ロト ・ 同ト ・ ヨト ・ ヨト

L.N.E. of \overline{X}_{r} .

Theorem

Let $\mathbb{K} \in \mathbb{R}, \mathbb{C}$ and X one of the spaces $Mat_{m \times n}(\mathbb{K})$, $Mat_{n \times n}^{sym}(\mathbb{K})$, $Mat_{n \times n}^{skew-sym}(\mathbb{K})$. For any $1 \le r \le m \le n$ and $A, B \in \overline{X_r}$ holds:

$$\frac{d_{in}^{X_r}(A,B)}{2\sqrt{2}} \leq d_{out}(A,B) \leq d_{in}^{\overline{X_r}}(A,B)$$

Proof.

We let $X = Mat_{m \times n}(\mathbb{K})$ $U(m) \times U(n)$ acts on $Mat_{m \times n}(\mathbb{K})$ by $A \to UAV$. As rank $A \leq r$, we can reduce A to the form.

$$\begin{bmatrix} A_1 & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix}, \quad A_1 \in Mat_{r \times r}(\mathbb{K})$$

Present *B* accordingly: $\begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix}$. Then:

$$d_{out}(A, B) = \sqrt{||A_1 - B_1||^2 + ||B_2||^2 + ||B_3||^2 + ||B_4||^2}$$

10/18

Consider the path $B(t) = \begin{bmatrix} B_1 & tB_2 \\ tB_3 & t^2B_4 \end{bmatrix}$ for $t \in [0, 1]$. Scaling a particular row/column do not increase the rank, then $B(t) \in \overline{X_r}$ for any $t \in [0, 1]$. Therefore we get an algebraic curve (inside X_r) that connects B = B(1) to $B(0) = \begin{vmatrix} B_1 & 0 \\ 0 & 0 \end{vmatrix}$. The length of this path is: $\int_0^1 \sqrt{||B_2||^2 + ||B_3||^2 + 4t^2||B_4||^2} dt$. It remains to move from B(0) to A. In total we get:

$$d_{in}^{\overline{X_r}}(A,B) \leq \int_0^1 \sqrt{||B_2||^2 + ||B_3||^2 + 4t^2||B_4||^2} dt + ||A_1 - B_1||.$$

Now we use the bounds

$$\int_0^1 \sqrt{||B_2||^2 + ||B_3||^2 + 4t^2||B_4||^2} dt < 2\sqrt{||B_2||^2 + ||B_3||^2 + ||B_4||^2}$$

and $x + y \le \sqrt{2(x^2 + y^2)}$ to get:

$$\begin{aligned} d_{in}^{\overline{X_r}}(A,B) &< 2\sqrt{||B_2||^2 + ||B_3||^2 + ||B_4||^2} + ||A_1 - B_1|| \leq \\ &\leq 2\sqrt{2}\sqrt{||A_1 - B_1||^2 + ||B_2||^2 + ||B_3||^2 + ||B_4||^2} \\ &= 2\sqrt{2} \cdot d_{out}(A,B). \end{aligned}$$

э

L.N.E. of X_r

Theorem

Let $\mathbb{K} \in \mathbb{R}, \mathbb{C}$ and X be one of the spaces $Mat_{m \times n}(\mathbb{K})$, $Mat_{n \times n}^{sym}(\mathbb{K})$, $Mat_{n \times n}^{skew-sym}(\mathbb{K})$. Suppose A, B belong to the same connected component of X_r , for some $r \le m$. Then

$$rac{d_{in}^{X_r}(A,B)}{2\sqrt{2}} \leq d_{out}(A,B) \leq d_{in}^{X_r}(A,B).$$

Notice that when $\mathbb{K} = \mathbb{C}$, the varieties X_r are connected, however this does not hold for real matrices. We give the general lines of the proof in the case $\mathbb{K} = \mathbb{C}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Proof.

Step 1. (Reduction to the case of X_n .) As in the proof for $\overline{X_r}$, *A* can be reduced to the form $\begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix}$. And *B* is brought to $\begin{bmatrix} B_1 & * \\ * & * \end{bmatrix}$.

It might happen that $rank(B_1) < r$. To avoid this we can take arbitrarily small but generic deformation of *B* inside X_r .

Now, as $rank(B_1) = r$, we can take the path $B(t) = \begin{bmatrix} B_1 & t*\\ t* & t^2* \end{bmatrix}$, and as before, the length of this path is less than $2 \cdot \sqrt{(\dots)}$.

It remains to connect the matrices $\begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} B_1 & 0 \\ 0 & 0 \end{bmatrix}$ inside X_r by a path of the total length $\leq 2d_{out}(A_1, B_1) + \epsilon$.

So, the initial question has been reduced to the stratum X_n of square matrices.

Step 2.

Consider the straight segment $[A, B] \subset X, A, B \in X_n$.

By algebraicity of the strata, it intersects $\overline{X_{n-1}}$ in a finite number of points which is at most deg($\overline{X_{n-1}}$).

Now, by the controlled path connectedness, we can deform the path slightly at each of these point to push it into the stratum X_n .

Hence we get a path inside X_n of length $\leq d_{out}(A, B) + \epsilon$. Together with the path B(t) of step 1 this finishes the proof.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example.

Let $V \subset Mat_{3\times 3}(\mathbb{C})$ be the linear subspace given as the image of the following map $F : \mathbb{C}^3 \to Mat_{3\times 3}(\mathbb{C})$:

$$F(x,y,z) = \begin{pmatrix} x & 0 & z \\ y & x & 0 \\ 0 & y & x \end{pmatrix}.$$

Let $Y := V \cap \overline{X}_2$, where \overline{X}_2 is the set of matrices in $Mat_{3\times 3}(\mathbb{C})$ with zero determinant, which is Lipschitz normally embedded.

The variety $Y = V(x^3 - y^2 z)$ is a family of cusps degenerating to a line.

Y being Lipschitz normally embedded would imply that the cusp $x^3 - y^2 = 0$ is Lipschitz normally embedded, a contradiction.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Proposition

Let $V \subset X = Mat_{m \times n}$ be a linear subspace intersecting X_r transversely for all $s \neq 0$, $s \leq r$ Then $Y := V \cap \overline{X}_r$ is Lipschitz normally embedded.

< ロ > < 同 > < 回 > < 回 >

Merci Beaucoup ! Muchas gracias ! Thank you very much ! Muito obrigada !

< ロ > < 同 > < 回 > < 回 >

Maria Aparecida Soares Ruas Lipschitz Normal Embeddings in the Space Montreal, July 25-26, 2017 18 / 18