Lipschitz Normal Embeddings in the Space of Matrices

Maria Aparecida Soares Ruas - ICMC-USP

Holomorphic Foliations and Singularities of Mappings and SpacesMCA 2017, Montreal, July 2017

Introduction

Lipschitz normal embeddings in the space of matrices, Dmitry Kerner, Helge Moeller Pedersen, R., arXiv:1703.04520.

- Bilipschitz geometry of generic determinantal varieties

Recall that a map $f: X \rightarrow Y, X$ and Y metric spaces is bilipschitz if f is a Lipschitz homeomorphism whose inverse is also Lipschitz.

- $(X, 0)$ germ of algebraic (analytic) variety over $\mathbb{K}=\mathbb{R}$ or \mathbb{C}, embedded in $\left(\mathbb{K}^{N}, 0\right)$.
We can define two natural metrics on X.
- The outer metric

$$
d_{\text {out }}(x, y):=\|x-y\|_{\mathbb{K}^{N}}
$$

i.e. the restriction of the Euclidean metric to $(X, 0)$.

- The inner metric

$$
\begin{equation*}
d_{i n}(x, y):=\inf _{\gamma}\left\{\text { length }_{\mathbb{K}^{N}}(\gamma) \mid \gamma:[0,1] \rightarrow X, \gamma(0)=x, \gamma(1)=y\right\} . \tag{1}
\end{equation*}
$$

Both metrics are independent of the choice of the embedding up to bilipschitz equivalence.

It is clear that

$$
d_{\text {out }}(x, y) \leq d_{i n}(x, y)
$$

The other direction is in general not true, and one says that

Definition

$(X, 0)$ is Lipschitz normally embedded (L.N.E.) if the outer and inner metrics are equivalent.

That is, if there exists a constant $K>0$ such that

$$
\frac{d_{\text {in }}(x, y)}{K} \leq d_{\text {out }}(x, y)
$$

Example

The plane curve $x^{3}-y^{2}=0$ is not L.N.E.. In fact,
$\left.d_{\text {out }}\left(t^{2}, t^{3}\right),\left(t^{2},-t^{3}\right)\right)=2|t|^{3}$ and $d_{\text {in }}\left(\left(t^{2}, t^{3}\right),\left(t^{2},-t^{3}\right)\right)=2|t|^{2}+o\left(t^{2}\right)$.
This implies that

$$
\frac{d_{\text {in }}\left(\left(t^{2}, t^{3}\right),\left(t^{2},-t^{3}\right)\right)}{d_{\text {out }}\left(\left(t^{2}, t^{3}\right),\left(t^{2},-t^{3}\right)\right)}
$$

is unbounded as $t \rightarrow 0$, hence there cannot exist a K as in the previous definition.

An irreducible complex plane curve is L.N.E. if and only if it is smooth.

Main result

Let $\operatorname{Mat}_{m \times n}(\mathbb{K})$ be the space of $m \times n$ matrices over $\mathbb{K}, \mathbb{K}=\mathbb{R}, \mathbb{C}$.
Let $X \subset \operatorname{Mat}_{m \times n}(\mathbb{K})$.

$$
X_{r}:=\{A \in X \mid \operatorname{rank} A=r\}, \quad \bar{X}_{r} \text { its topological closure }
$$

(Generic determinantal varieties)

When $X=\operatorname{Mat}_{m \times n}(\mathbb{C}), \bar{X}_{r}$ is an irreducible algebraic variety such that:

- $\operatorname{cod} \bar{X}_{r}=(m-r)(n-r)$
- Sing $\left(\bar{X}_{r}\right)=\bar{X}_{r-1}$
- The decomposition $\bar{X}_{r}=\bigcup_{s \leq r} X_{s}$ is a Whitney stratification.

Theorem

(Kerner, Pedersen, R.) Let X be one of the following sets:
(1) $\operatorname{Mat}_{m \times n}(\mathbb{K})$
(2) $n \times n$ symmetric matrices over \mathbb{K}
(3) $n \times n$ antisymmetric matrices over \mathbb{K}.

Then \bar{X}_{r} and $X_{r}, r \leq m \leq n$ are Lipschitz Normally Embedded.

Properties of the varieties X_{r} and \bar{X}_{r}

- X_{r} and \bar{X}_{r} are G-invariant as follows: $X=\operatorname{Mat}_{m \times n}(\mathbb{C}), G=U(m) \times U(n)$ and $X=\operatorname{Mat}_{m \times n}(\mathbb{R}), G=O(m) \times O(n)$.
- \bar{X}_{r} is a (metric) cone.
- The local structure of \bar{X}_{r} and the controlled path-connectedness of the connected components of X_{r}.

L.N.E. of \bar{X}_{r}.

Theorem

Let $\mathbb{K} \in \mathbb{R}, \mathbb{C}$ and X one of the spaces Mat $_{m \times n}(\mathbb{K})$, Mat $t_{n \times n}^{s y m}(\mathbb{K})$, Mat $_{n \times n}^{\text {skew-sym }}(\mathbb{K})$. For any $1 \leq r \leq m \leq n$ and $A, B \in \bar{X}_{r}$ holds:

$$
\frac{d_{i n}^{\bar{X}_{r}}(A, B)}{2 \sqrt{2}} \leq d_{\text {out }}(A, B) \leq d_{i n}^{\bar{X}_{r}}(A, B)
$$

Proof.

We let $X=$ Mat $_{m \times n}(\mathbb{K})$
$U(m) \times U(n)$ acts on $M a t_{m \times n}(\mathbb{K})$ by $A \rightarrow U A V$. As rank $A \leq r$, we can reduce A to the form.

$$
\left[\begin{array}{cc}
A_{1} & 0_{r \times(n-r)} \\
0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}
\end{array}\right], \quad A_{1} \in \operatorname{Mat}_{r \times r}(\mathbb{K}) .
$$

Present B accordingly: $\left[\begin{array}{ll}B_{1} & B_{2} \\ B_{3} & B_{4}\end{array}\right]$. Then:

$$
d_{\text {out }}(A, B)=\sqrt{\left\|A_{1}-B_{1}\right\|^{2}+\left\|B_{2}\right\|^{2}+\left\|B_{3}\right\|^{2}+\left\|B_{4}\right\|^{2}}
$$

Consider the path $B(t)=\left[\begin{array}{cc}B_{1} & t B_{2} \\ t B_{3} & t^{2} B_{4}\end{array}\right]$ for $t \in[0,1]$. Scaling a particular row/column do not increase the rank, then $B(t) \in \bar{X}_{r}$ for any $t \in[0,1]$. Therefore we get an algebraic curve (inside $\overline{X_{r}}$) that connects $B=B(1)$ to $B(0)=\left[\begin{array}{cc}B_{1} & 0 \\ 0 & 0\end{array}\right]$.
The length of this path is: $\int_{0}^{1} \sqrt{| | B_{2}\left\|^{2}+\right\| B_{3} \|^{2}+\left.4 t^{2}| | B_{4}\right|^{2}} d t$. It remains to move from $B(0)$ to A. In total we get:

$$
d_{i n}^{X_{t}}(A, B) \leq \int_{0}^{1} \sqrt{\left\|B_{2}\right\|^{2}+\left\|B_{3}\right\|^{2}+4 t^{2}\left\|B_{4}\right\|^{2}} d t+\left\|A_{1}-B_{1}\right\| .
$$

Now we use the bounds

$$
\int_{0}^{1} \sqrt{\left\|B_{2}\right\|^{2}+\left\|B_{3}\right\|^{2}+4 t^{2}\left\|B_{4}\right\|^{2}} d t<2 \sqrt{\left\|B_{2}\right\|^{2}+\left\|B_{3}\right\|^{2}+\left\|B_{4}\right\|^{2}}
$$

and $x+y \leq \sqrt{2\left(x^{2}+y^{2}\right)}$ to get:

$$
\begin{aligned}
d_{i r}^{\overline{X_{r}}}(A, B) & <2 \sqrt{\left\|B_{2}\right\|^{2}+\left\|B_{3}\right\|^{2}+\left\|B_{4}\right\|^{2}}+\left\|A_{1}-B_{1}\right\| \leq \\
& \leq 2 \sqrt{2} \sqrt{\left\|A_{1}-B_{1}\right\|^{2}+\left\|B_{2}\right\|^{2}+\left\|B_{3}\right\|^{2}+\left\|B_{4}\right\|^{2}} \\
& =2 \sqrt{2} \cdot d_{\text {out }}(A, B) .
\end{aligned}
$$

L.N.E. of X_{r}

Theorem

Let $\mathbb{K} \in \mathbb{R}, \mathbb{C}$ and X be one of the spaces Mat $_{m \times n}(\mathbb{K})$, Mat $t_{n \times n}^{s y m}(\mathbb{K})$, Mat $_{n \times n}^{\text {skew-sym }}(\mathbb{K})$. Suppose A, B belong to the same connected component of X_{r}, for some $r \leq m$. Then

$$
\frac{d_{i n}^{X_{r}}(A, B)}{2 \sqrt{2}} \leq d_{\text {out }}(A, B) \leq d_{i n}^{X_{r}}(A, B) .
$$

Notice that when $\mathbb{K}=\mathbb{C}$, the varieties X_{r} are connected, however this does not hold for real matrices. We give the general lines of the proof in the case $\mathbb{K}=\mathbb{C}$.

Proof.

Step 1. (Reduction to the case of X_{n}.) As in the proof for $\overline{X_{r}}, A$ can be reduced to the form $\left[\begin{array}{cc}A_{1} & 0 \\ 0 & 0\end{array}\right]$. And B is brought to $\left[\begin{array}{cc}B_{1} & * \\ * & *\end{array}\right]$. It might happen that $\operatorname{rank}\left(B_{1}\right)<r$. To avoid this we can take arbitrarily small but generic deformation of B inside X_{r}.
Now, as $\operatorname{rank}\left(B_{1}\right)=r$, we can take the path $B(t)=\left[\begin{array}{cc}B_{1} & t * \\ t * & t^{2} *\end{array}\right]$, and as before, the length of this path is less than $2 \cdot \sqrt{(\ldots)}$. It remains to connect the matrices $\left[\begin{array}{cc}A_{1} & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}B_{1} & 0 \\ 0 & 0\end{array}\right]$ inside X_{r} by a path of the total length $\leq 2 d_{\text {out }}\left(A_{1}, B_{1}\right)+\epsilon$.
So, the initial question has been reduced to the stratum X_{n} of square matrices.

Step 2.
 Consider the straight segment $[A, B] \subset X, A, B \in X_{n}$.

By algebraicity of the strata, it intersects $\overline{X_{n-1}}$ in a finite number of points which is at most $\operatorname{deg}\left(\overline{X_{n-1}}\right)$.

Now, by the controlled path connectedness, we can deform the path slightly at each of these point to push it into the stratum X_{n}.

Hence we get a path inside X_{n} of length $\leq d_{\text {out }}(A, B)+\epsilon$. Together with the path $B(t)$ of step 1 this finishes the proof.

Example.

Let $V \subset \operatorname{Mat}_{3 \times 3}(\mathbb{C})$ be the linear subspace given as the image of the following map $F: \mathbb{C}^{3} \rightarrow M a t_{3 \times 3}(\mathbb{C})$:

$$
F(x, y, z)=\left(\begin{array}{lll}
x & 0 & z \\
y & x & 0 \\
0 & y & x
\end{array}\right) .
$$

Let $Y:=V \cap \bar{X}_{2}$, where \bar{X}_{2} is the set of matrices in $M a t_{3 \times 3}(\mathbb{C})$ with zero determinant, which is Lipschitz normally embedded.
The variety $Y=V\left(x^{3}-y^{2} z\right)$ is a family of cusps degenerating to a line. Y being Lipschitz normally embedded would imply that the cusp $x^{3}-y^{2}=0$ is Lipschitz normally embedded, a contradiction.

Proposition

Let $V \subset X=$ Mat $t_{m \times n}$ be a linear subspace intersecting X_{r} transversely for all $s \neq 0, s \leq r$ Then $Y:=V \cap \bar{X}_{r}$ is Lipschitz normally embedded.

Merci Beaucoup !

Muchas gracias !

Thank you very much! Muito obrigada!

