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Chapter 1

Regular surfaces

In these notes the term differentiable means differentiable of class C∞.

1.1 Regular surfaces

In few words, a regular surface in R3 is a subset that is locally homeo-
morphic to an open subset of R2.

Definition 1.1.1. A subset M ⊂ R3 is called a regular surface if, for each
point p ∈ M , there exists an open set V ⊂ R3, with p ∈ V , and a homeo-
morphism ϕ : U →M ∩ V defined on an open set U ⊂ R2, such that

(a) ϕ is differentiable,

(b) For each point x ∈ U , the differential dϕ(x) : R2 → R3 is injective.

The mapping ϕ is called a parametrization ofM around p, and the subset
M ∩ V is called a coordinate neighborhood of M . This means that M is
endowed with the induced topology of R3, and therefore any regular surface
is, in particular, a topological subspace of R3.

The condition that ϕ is differentiable means that if we write

ϕ(x1, x2) = (ϕ1(x1, x2), ϕ2(x1, x2), ϕ3(x1, x2)),

then the coordinate functions ϕ1, ϕ2, ϕ3 have continuous partial derivatives
of all orders in the open set U .

The condition that dϕ(x) : R2 → R3 is a injective linear map is equivalent
to any of the following conditions:

1



(a) The set {dϕ(x) · ei : 1 ≤ i ≤ 2} is linearly independent, where {e1, e2}
denotes the canonical basis of R2.

(b) The Jacobian matrix dϕ(x) has rank two at any point x ∈ U .

Example 1.1.2. Any two-dimensional vector space E ⊂ R3 is a regular
surface. In fact, consider a linear isomorphism T : E → R2, and endow E
with the unique topology (induced of R3) that makes T a homeomorphism.
Since any linear mapping into R2 is differentiable, it follows that T is a
diffeomorphism, and thus T is a global parametrization of E.

Example 1.1.3. Let us show that the unit sphere S2 ⊂ R3 is a regular
surface. Fix a point p ∈ S2 other than the north pole N = (0, 0, 1) and
consider the stereographic projection πN : S2 \{N} → R2. We already know
that πN is a homeomorphism, whose inverse is the map ϕ : R2 → S2 \ {N}
given by

ϕ(x) =

(
2x1

‖x‖2 + 1
,

2x2
‖x‖2 + 1

,
‖x‖2 − 1

‖x‖2 + 1

)
,

for every point x = (x1, x2) ∈ R2. Since each coordinate function of ϕ is
differentiable, it follows that ϕ is also differentiable. It is straightforward to
check that dϕ(x) has rank two at any point x ∈ R2. Finally, if p = N , just
consider the stereographic projection πS relative to the south pole S ∈ S2.

Example 1.1.4. The graph of a differentiable function f : U → R, defined
in an open set U ⊂ R2, is a regular surface. In fact, denoting by Gr(f) the
graph of f , let us show that the map ϕ : U → R3 given by

ϕ(x) = (x, f(x)),

is a global parametrization of Gr(f). Since f is differentiable, the same holds
for ϕ. Each point (x, f(x)) ∈ Gr(f) is the image under ϕ of the unique point
x ∈ U , and ϕ is therefore injective. Moreover, the restriction to Gr(f) of the
projection of R3 onto R2 is a inverse to ϕ, and this shows that ϕ−1 is also
continuous. It follows that ϕ is a homeomorphism. Finally, it is easy to see
that dϕ(x) has rank two at any point x ∈ U .

The following result provides a local converse of Example 1.1.4. More
precisely, any regular surface is locally the graph of a differentiable function.

Proposition 1.1.5. Given a regular surface M ⊂ R3 and a point p ∈ M ,
there exist an open set U ⊂ R2, an open set V ⊂ R3 with p ∈ V , and a
differentiable function g : U → R such that M ∩ V = Gr(g).
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Proof. Fix a point p ∈ M and consider a parametrization ϕ : U → ϕ(U)
of M , with p = ϕ(x). Since E = dϕ(x)(R2) is a two-dimensional vetor
subspace of R3, there exists an orthogonal decomposition R3 = R2 ⊕R such
that the projection π : R2 × R → R2 maps E isomorphically onto R2, and
define the map

η = π ◦ ϕ : U → R2.

Since dη(q) = π ◦ dϕ(q) is a linear isomorphism, it follows from the inverse
function theorem that there exist a open set W ⊂ R2, with q ∈ W ⊂ U ,
such that η|W :W → η(W ) = Z is a diffeomorphism. Define

ξ = (η|W )−1 : Z →W and ψ = ϕ ◦ ξ.

It follows that ψ is also a parametrization of M and

π ◦ ψ = π ◦ (ϕ ◦ ξ) = η ◦ ξ = id.

According to the orthogonal decomposition R3 = R2⊕R, it follows from the
above equality that the first coordinate of ψ(x) is x. Let us denote by g(x)
the second one. Thus,

ψ(Z) = ϕ(W ) = {(x, g(x)) : x ∈W}

for some differentiable function g :W → R. Since ϕ is a open map, one has

ϕ(W ) =M ∩ V = Gr(g),

for some open set V ⊂ R3, with p ∈ V .

Let us look a simple application of Proposition 1.1.5.

Example 1.1.6. Let us consider the one-sheeted cone M ⊂ R3 given by

M = {(x, y, z) : x2 + y2 = z2, z ≥ 0}.

We will show that M is not a regular surface. If M were a regular surface
then, by virtue of Proposition 1.1.5, M would be locally a graph of a differ-
ential function around (0, 0, 0). More precisely, there exist open sets U ⊂ R2

and V ⊂ R3, with 0 ∈ V , and a differentiable function g : U → R such that
M ∩ V = Gr(g). Note that, according to a decomposition R3 = R2 ⊕R, the
only possibility for M ∩ V to be a graph is for the second factor to be the
axis-z. Thus, it follows that g = f |U , where f(x, y) =

√
x2 + y2. However,

f is not differentiable at (0, 0).
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Let f : V → R be a differentiable function, defined in an open set V ⊂ R3.
We say that a point p ∈ V is a regular point of f if the direrential df(p) is
surjective, that is, df(p) 6= 0. A point c ∈ R is called a regular value of f if
the inverse image f−1(c) contains only regular points of f . Notice that any
point c 6∈ f(V ) is trivially a regular value of f .

Proposition 1.1.7. Let f : V → R be a differentiable function, defined in
an open set V ⊂ R3, and c ∈ R be a regular value of f . If f−1(c) 6= ∅, then
M = f−1(c) is a regular surface.

Proof. By virtue of Example 1.1.4, it suffices to prove that M is locally
graph of some differentiable function. Given a point p ∈ M , with p =
(x0, y0, z0), we can assume that ∂f

∂z (p) 6= 0. Therefore, it follows from the
implicit function theorem that there exist an open set W = U × I, where U
is an open set of R2 with (x0, y0) ∈ U , and I is an open interval with z0 ∈ I,
and a differentiable function g : U → R such that

f((x, y), g(x, y)) = c,

for every (x, y) ∈ U . This proves that M ∩W = Gr(g).

Example 1.1.8. The unit sphere S2 ⊂ R3 can be described as the inverse
image f−1(1) of the function f : R3 → R given by

f(x) = ‖x‖2 = 〈x, x〉,

for every x ∈ R3. Notice that f is differentiable and, for any point p ∈ R3

and any vector v ∈ R3, we obtain

df(p) · v = 2〈p, v〉.

This implies that 0 ∈ R3 is the unique critical point of f . Since f(0) = 0 6= 1,
we conclude that 1 is regular value of f . Therefore, the sphere S2 is a regular
surface as we have already seen.

Remark 1.1.9. The inverse image f−1(c) can be a regular surface without
c being a regular value of f . For instance, consider the function f : R3 → R
given by f(x, y, z) = z2. Note that f is differentiable and f−1(0) is the
plane-xy, which is a regular surface in R3. However, the point 0 ∈ R is not
a regular value of f , because df(x, y, 0) = 0, for every (x, y, 0) ∈ f−1(0).

The following result is a converse of Proposition 1.1.7.
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Theorem 1.1.10. Any regular surface M in R3 is locally the inverse image
of a regular value. More precisely, given a point p ∈M , there exist an open
set V ⊂ R3 with p ∈ V , and a differentiable function f : V → R such that
M ∩ V = f−1(0), where 0 ∈ R is a regular value of f .

Proof. It follows from Proposition 1.1.5 that there exists an open set V ⊂ R3,
with p ∈ V , such that M ∩ V = Gr(g), where g : U → R is a differentiable
function defined in an open set U ⊂ R2. Define a function f : V → R by
f(x, y) = y − g(x). By construction, one has

M ∩ V = Gr(g) = f−1(0).

It suffices to prove that df(x, y) is surjective at any point (x, y) ∈ f−1(0).
In fact, given (x, y) ∈ f−1(0) and (u, v) ∈ R3, we obtain:

df(x, y) · (u, v) = df(x, y) · (u, 0) + df(x, y) · (0, v)
= Id(0)− dg(x) · u+ Id(v)− dg(x) · 0
= v − dg(x) · u.

Therefore, given v ∈ R, one has df(x, y) · (0, v) = v, and this proves that 0
is a regular value of f .

1.2 Differentiable mappings between surfaces

In this section we will define what it means for a map f : M → N ,
between two regular surfacesM and N , to be differentiable at a point p ∈M .

Definition 1.2.1. A map f :M → N , between the regular surfaces M and
N , is said to be differentiable at a point p ∈M if there exist parametrizations
ϕ : U → ϕ(U) of M and ψ : V → ψ(V ) of N , with f(ϕ(U)) ⊂ ψ(V ) and
p = ϕ(x), such that the map

ψ−1 ◦ f ◦ ϕ : U → V (1.1)

is differentiable at x ∈ U .

The map given in (1.1) is called a representation of f in terms of the
parametrizations ϕ and ψ. We have to show that this definition does not
depend on the choice of parametrizations. In fact, consider parametrizations
ϕ′ : U ′ → ϕ′(U ′) of M and ψ′ : V ′ → ψ′(V ′) of N , with p ∈ ϕ′(U ′) and
f(ϕ′(U ′)) ⊂ ψ′(V ′). In the intersection ϕ′−1(ϕ(U) ∩ ϕ′(U ′)), one has

ψ′−1 ◦ f ◦ ϕ′ = (ψ′−1 ◦ ψ) ◦ (ψ−1 ◦ f ◦ ϕ) ◦ (ϕ−1 ◦ ϕ′).
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Therefore, the differentiability of f will be well-defined if we prove that
ψ′−1 ◦ ψ and ϕ−1 ◦ ϕ′ are differentiable. But this will be a consequence of
the following lemma.

Let ϕ : U → ϕ(U) and ψ : V → ψ(V ) be two parametrizations of a
regular surface M such that ϕ(U) ∩ ψ(V ) 6= ∅. The map

ψ−1 ◦ ϕ : ϕ−1(W )→ ψ−1(W ), (1.2)

is called the change of coordinates between the parametrizations ϕ and ψ,
where W = ϕ(U) ∩ ψ(V ).

Lemma 1.2.2. The change of coordinates (1.2) is a diffeomorphism.

Proof. Fix a point p ∈ ϕ(U)∩ψ(V ), with p = ϕ(q). Since dϕ(q) is injective,
and writing

ϕ(u, v) = (x(u, v), y(u, v), z(u, v)),

we can assume without loss of generality that ∂(x,y)
∂(u,v)(q) 6= 0. Define a map

ξ : U × R→ R3 by

ξ(u, v, w) = (x(u, v), y(u, v), z(u, v) + w).

ξ is clearly differentiable and ξ|U×{0} = ϕ, thus

det(dξ(q, 0)) = det

 ∂x
∂u

∂x
∂v 0

∂y
∂u

∂y
∂v 0

∂z
∂u

∂z
∂v 1

 =
∂(x, y)

∂(u, v)
(q) 6= 0.

Therefore, it follows from inverse function theorem that there exists an open
set K ⊂ R3, with (q, 0) ∈ K, such that ξ|K : K → ξ(K) is a diffeomorphism.
Note that Z = ξ(K) is an open set of R3, with p ∈ Z. Since ξ|U×{0} = ϕ,
one has

ξ−1|ϕ(U)∩Z = ϕ−1|ϕ(U)∩Z .

On the other hand, since ϕ(U) ∩ Z is an open set of M and ψ is a homeo-
morphism, it follow that ψ−1(ϕ(U) ∩ Z) is an open set of V . Therefore,

ϕ−1 ◦ ψ|ψ−1(ϕ(U)∩Z) = ξ−1 ◦ ψ|ψ−1(ϕ(U)∩Z)

is differentiable as a composition of differentiable maps. Analogously, we can
show that ψ−1 ◦ ϕ is differentiable, and thus it is a diffeomorphism.

Let us explore some consequences.
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Corollary 1.2.3. Let M , N be regular surfaces, and assume that M ⊂ V ,
where V is an open set of R3, and that f : V → R3 is a differentiable map
such that f(M) ⊂ N . Then the restriction f |M : M → N is a differentiable
map.

Proof. Given a point p ∈M , consider parametrizations ϕ : U → ϕ(U) of M
an ψ : V → ψ(V ) of N , with p ∈ ϕ(U) and f(ϕ(U)) ⊂ ψ(V ). Then, the map

ψ−1 ◦ f ◦ ϕ : U → V

is differentiable.

Example 1.2.4. The map f : R3 → R3 given by f(x, y, z) = (ax, by, cz),
where a, b, c are positive real numbers, is clearly differentiable. The restric-
tion of f to the unit sphere S2 ⊂ R3 is differentiable. In fact, f |S2 is a
differentiable map of the sphere S2 into the ellipsoid E .

Remark 1.2.5. In the case of a map f : M → R2, of a regular surfaceM into
R2, the Definition 1.2.1 takes a rather simpler form. Namely, in this case, f
is differentiable at p ∈ M if there exists a parametrization ϕ : U → ϕ(U) of
M , with p = ϕ(x), such that

f ◦ ϕ : U → R2

is differentiable at x ∈ U . In fact, just consider ψ equal to the identity in
Definition 1.2.1.

Corollary 1.2.6. If ϕ : U → ϕ(U) is a parametrization of a regular surface
M , then ϕ−1 : ϕ(U)→ R2 is also differentiable.

Proof. Given a point p ∈ ϕ(U), consider the parametrization ϕ : U → ϕ(U)
of M . One has p ∈ ϕ(U) and the representation of ϕ−1 in terms of ϕ is just
the identity map, which is differentiable.

Two regular surfacesM and N are diffeomorphic if there exists a bijective
differentiable map f : M → N , whose inverse f−1 : N → M is also differen-
tiable. In this case, f is called a diffeomorphism fromM to N . In particular,
it follows from Corollary 1.2.6 that, if ϕ : U → ϕ(U) is a parametrization of
a regular surface M , then U and ϕ(U) are diffeomorphic.

Finally, we will now give a definition for a differentiable function on a
regular surface.
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Definition 1.2.7. A function f : M → R, defined on a regular surface M ,
is said to be differentiable at a point p ∈M if there exists a parametrization
ϕ : U → ϕ(U) of M , with p = ϕ(x), such that the composition

f ◦ ϕ : U → R

is differentiable at x ∈ U .

It follows from Lemma 1.2.2 that the Definition 1.2.7 does not depend
on the choice of the parametrization ϕ. In fact, if ψ : V → ψ(V ) is another
parametrization of M , with p = ψ(y), then

f ◦ ψ = (f ◦ ϕ) ◦ (ϕ−1 ◦ ψ)

is also differentiable.

Corollary 1.2.8. If f : R3 → R is a differentiable function, then the restric-
tion of f to any regular surface M is a differentiable function on M .

Proof. For any point p ∈ M and any parametrization ϕ : U → ϕ(U) of M ,
with p = ϕ(x), the function f ◦ ϕ : U → R is differentiable at x ∈ U .

Example 1.2.9. Given a regular surface M and a unit vector v ∈ R3, con-
sider the height function f : M → R relative to v, given by f(p) = 〈p, v〉
for every p ∈M . It follows immediatly from Corollary 1.2.8 that f is differ-
entiable.

1.3 The tangent plane

In this section we will define the tangent plane to a regular surface M at
a point p ∈M . Before stating the concepts we will need some terminology.

A parametrized differentiable curve in R3 is just a differentiable map
α : I → R3 defined in an open interval I ⊂ R. The term differentiable
means that α is a correspondence which maps each instant t ∈ I into a point
α(t) = (x(t), y(t), z(t)) ∈ R3 in such way that the functions x(t), y(t), z(t)
are differentiable. The variable t is called the parameter of the curve. The
vector α′(t) = (x′(t), y′(t), z′(t)) ∈ R3 is called the tangent vector of α at t.
The image set α(I) ⊂ R3 is called the trace of α.

Let M be a regular surface. A differentiable curve α : I → M is simply
a differentiable curve α : I → R3 such that α(I) ⊂M , that is, α(t) ∈M for
every t ∈ I. Fix a point p ∈ M . A vector v ∈ R3 is called a tangent vector
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to M at p if there exists a differentiable curve α : (−ε, ε) → M such that
α(0) = p and α′(0) = v. The tangent plane to M at p is the collection of all
tangent vectors to M at p, and it will be denoted by TpM .

Proposition 1.3.1. For any parametrization ϕ : U → ϕ(U) of M , with
p = ϕ(x), one has

TpM = dϕ(x)(R2).

Proof. Any vector in the image of dϕ(x) is of the form dϕ(x) ·v, for some v ∈
R2 and therefore is the tangent vector at 0 of the differentiable curve α(t) =
ϕ(x+tv). Conversely, let v ∈ TpM , with v = α′(0), where α : (−ε, ε)→M is
a differentiable curve, with α(0) = p. By virtue of Corollary 1.2.6, the curve
γ = ϕ−1 ◦ α : (−ε, ε) → U is differentiable, with β(0) = x. Since α = ϕ ◦ β,
it follows from the chain rule that

v = α′(0) = dϕ(x) · γ′(0)

lies in the image of dϕ(x).

It follows directly from Proposition 1.3.1 that the tangent plane TpM
is a two-dimensional vector subspace of R3, and it does not depend on the
parametrization ϕ. Moreover, the choice of a parametrization ϕ : U → ϕ(U)
of M , with p = ϕ(q), determines a basis {ϕu(p), ϕv(p)} of TpM , called the
basis associated to ϕ. Here the notations ϕu, ϕv mean

ϕu(p) =
∂ϕ

∂u
(q) = dϕ(q) · e1 and ϕv(p) =

∂ϕ

∂v
(q) = dϕ(q) · e2

Let us see how to determine the coordinates of a vector v ∈ TpM in the
basis {ϕu(p), ϕv(p)} associated to a parametrization ϕ : U → ϕ(U) of M ,
with p = ϕ(q).

Example 1.3.2. LetM be a regular surface given as the inverse image under
a differentiable function f : R3 → R of a regular value, namely M = f−1(c).
We claim that

TpM = ker df(p)

for any p ∈M . In fact, let w ∈ TpM , with w = α′(0), where α : (−ε, ε)→M
is a diferentiable curve, with α(0) = p. Then, β(t) = (f ◦α)(t) is a constant
curve along (−ε, ε). By the chain rule we obtain

0 = β′(0) = df(p) · w,

and this proves the inclusion TpM ⊂ ker df(p) and hence the equality by
dimensional reasons.
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Given a differentiable map f : M → N and a point p ∈ M , we want to
define the differential of f at p, denoted by df(p), and being a linear map
from TpM to Tf(p)N . More precisely, for each vector w ∈ TpM , define

df(p) · w = (f ◦ α)′(0), (1.3)

where α : (−ε, ε)→M is a differentiable curve with α(0) = p and α′(0) = w.

Proposition 1.3.3. The map df(p) : TpM → Tf(p)N given in (1.3) is well-
defined and is linear, and it will be called the differential of f at p ∈M .

Proof. Firstly, we have to check that df(p) ·w does not depend on the choice
of curve α. Let ϕ : U → ϕ(U) and ψ : V → ψ(V ) parametrizations of M and
N , respectivaly, with p = ϕ(q) and f(ϕ(U)) ⊂ ψ(V ). Writing

ϕ = ϕ(u, v) and ψ = ψ(z, w),

suppose that f is expressed in these coordinates by

f(u, v) = (f1(u, v), f2(u, v))

and that α is expressed by

α(t) = (u(t), v(t)).

Thus, the curve β = f ◦ α can be write as

β(t) =
(
f1(u(t), v(t)), f2(u(t), v(t))

)
,

and the expression of β′(0) in the basis {ψz, ψw} is

β′(0) =

(
∂f1
∂u

u′(0) +
∂f1
∂v

v′(0),
∂f2
∂u

u′(0) +
∂f2
∂v

v′(0)

)
. (1.4)

The relation (1.4) shows that β′(0) depends only on the map f and the
coordinates (u′(0), v′(0)) of w in the basis {ϕu, ϕv}. Therefore, β′(0) is
independent of α. Moreover, it also follows from (1.4) that

β′(0) = df(p) · w =

( ∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

)(
u′(0)
v′(0)

)
. (1.5)

This shows that df(p) is a linear map from TpM to Tf(p)N , whose matrix in
the basis {ϕu, ϕv} of TpM and {ψz, ψw} of Tf(p)N is just the matrix given
in (1.5).
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Analogously, given a differentiable function f : M → R, we can define
the differential of f at p ∈M as a linear map df(p) : TpM → R by

df(p) · v = (f ◦ α)′(0),

where α : (−ε, ε)→M is a differentiable curve with α(0) = p and α′(0) = v.

Example 1.3.4. Given a unit vector v ∈ R3, consider the height function
f : M → R given by f(p) = 〈v, p〉, for every p ∈ M . Fix a point p ∈ M and
let w ∈ TpM . To compute the differential df(p) · w, choose a differentiable
curve α : (−ε, ε)→M with α(0) = p and α′(0) = w. Then

df(p) · w = (f ◦ α)′(0) = d

dt
f(α(t))(0) =

d

dt
〈v, α(t)〉|t=0

= 〈v, α′(0)〉 = 〈v, w〉.

Example 1.3.5. Let Rθ : R3 → R3 be the rotation of angle θ about the
axis-z. The rotation Rθ is linear, therefore it is differentiable. Moreover, Rθ
restricted to the unit sphere S2 is a differentiable map of S2. Thus, fixed a
point p ∈ S2 and given v ∈ TpS2, we obtain

dRθ(p) · v = Rθ(v),

because Rθ is linear. Note that Rθ leaves the north poleN fixed, and dRθ(N)
is just a rotation of angle θ in the plane TNM .

1.4 Orientable surfaces

Intuitively, orientable surfaces are those for which ir is possible to define
a clockwise consistently. To ilustrate the underlying idea, we consider two
familiar surfaces: a cylinder and a Mobius band. We can distinguish between
a cylinder and a Mobius band by noticing that every cylinder has an inside
and an outside, and we can paint one blue and other yellow, for example.
But if we tray to paint a Mobius band in two colors, we fail because it has
just one side.

Let E be a finite-dimensional real vector space. We say that two bases E
and F define the same orientation in E if the transition matrix from E to F
has positive determinant. In this case, we write E ≡ F . This property defines
an equivalence relation on the set of all bases of E, and each equivalence
class according to this relation is called an orientation for E. Moreover,
the relation ≡ has exactly two equivalence class, that is, the vector space E
admits two orientations.
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A vector space E together with a choice of orientation O is called an
oriented vector space. Once an orientation O for E is fixed, the other one
is called the opposite orientation, and it will be denoted by −O. The bases
in the orientation O will be called positive, while the others will be called
negative. A linear isomorphism T : E → F between two oriented vector
spaces is called positive if maps positive bases of E into positive bases of F .

Example 1.4.1. The Euclidean space Rn will be considered oriented requir-
ing that the canonical basis of Rn be positive. Therefore, a linear isomor-
phism T : Rn → Rn is positive if and only if det(T ) > 0.

Now we will extend the notion of orientability to each tangent space of
a regular surface M . We say that two parametrizations ϕ : U → ϕ(U) and
ψ : V → ψ(V ) of M are compatible if either ϕ(U) ∩ ψ(V ) = ∅ or the change
of coordinates

ψ−1 ◦ ϕ : ϕ−1(W )→ ψ−1(W ),

has positive jacobian determinant everywhere on ϕ−1(W ).

Remark 1.4.2. If ϕ(U) ∩ ψ(V ) 6= ∅, the change of coordinates ψ−1 ◦ ϕ
has jacobian determinant different from zero on ϕ−1(ϕ(U) ∩ ψ(V )). Since
determinant is a continuous function, its sign is constant in each connected
component of the open set ϕ−1(ϕ(U) ∩ ψ(V ) ⊂ R2.

Definition 1.4.3. A regular surface M is called orientable if there exists
a cover A of M consisting of coordinate neighborhoods such that any two
parameterizations of A are compatible.

The choice of such a cover is called an orientation of M , and in this case
we say that M is oriented. If it is not possible to make such a choice, the
surface M is called nonorientable.

Example 1.4.4. The plane R2 is an orientable surface, because the identity
map is a global compatible parametrization of R2. The orientation given by
such parametrization is called the canonical orientation of R2.

Example 1.4.5. A regular surface which is the graph of a differentiable
function is an orientable surface. More generally, all surfaces which can be
covered by one coordinate neighborhood are trivially orientable.

Proposition 1.4.6. An orientation on a regular surface M determines an
orientation on each tangent plane of M .

12



Proof. Let A be an orientation on M . Given a point p ∈ M , consider a
parametrization ϕ ∈ A, with p = ϕ(x), and define an orientation Op on
TpM requiring the basis {dϕ(x) · e1, dϕ(x) · e2} be positive. If ψ is another
parametrization in the cover A, with p = ψ(y), we obtain:

dψ(y) = d(ϕ ◦ ϕ−1 ◦ ψ)(y) = dϕ(x) ◦ d(ϕ−1 ◦ ψ)(y).

The isomorphism d(ϕ−1 ◦ ψ)(y) preserve orientation, because ϕ and ψ are
compatible, e dϕ(x) preserves orientation by hypothesis. Therefore, the set
{dψ(y) · e1, dψ(y) · e2} is also a positive basis of TpM .

Before giving a geometric interpretation of the idea of orientability of a
regular surface in R3, we need a few definitions.

Given a regular surface M , the inner product of R3 naturally induces
an inner product in each tangent plane TpM of M . More precisely, given
p ∈M and v, w ∈ TpM , we define 〈v, w〉 to be the inner product of v and w
as vectors of R3.

The inner product defined above allows us to consider the notion of or-
thogonality. More precisely, we say that a vector η ∈ R3 is orthogonal to
a regular surface M at a point p ∈ M if 〈η, v〉 = 0, for every v ∈ TpM .
Globally, a normal vector field to a regular surface M is a map η : M → R3

such that η(p) is orthogonal to TpM , for every p ∈M .

Theorem 1.4.7. A regular surface M ⊂ R3 is orientable if and only if there
exists a diflerentiable unit normal vector field N : M → R3 on M .

Proof. Let A be an orientation of M , that is, a cover of M by compatible
coordinate neighborhoods. Fix a point p ∈ M with p = ϕ(u, v), where
ϕ : U → ϕ(U) is a positive parametrization of M . Now, define a map
N : ϕ(U)→ R3 by

N(q) =
ϕu × ϕv
‖ϕu × ϕv‖

(q), (1.6)

for every q ∈ ϕ(U), where × denotes the vector product in R3. Thus we
obtain a differentiable map, orthogonal to M in every point of ϕ(U). If
ψ : V → ψ(V ) is another positive parametrization of M with p = ψ(z, w),
let us denote by h = ϕ−1◦ψ the change of coordinates, with (u, v) = h(z, w).
Thus ψ = ϕ ◦ h and by setting q = (z, w), we obtain

ψz(q) = ϕu(h(q))
∂u

∂z
(q) + ϕv(h(q))

∂v

∂z
(q)

ψw(q) = ϕu(h(q))
∂u

∂w
(q) + ϕv(h(q))

∂v

∂w
(q)

.
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It follows that
ψz × ψw = det(dh(q)) · ϕu × ϕv,

and from which we conclude that the normals associated to ϕ and ψ coincide,
since det(dh(q)) > 0. Therefore, if p belongs to the intersection of two
coordinate neighborhoods, the corresponding normals coincide, and thus we
obtain an unit normal differentiable vector field N : M → R3. Conversely,
given a point p ∈M , define an orientation in TpM as follows: a basis {v1, v2}
of TpM is positive if and only if {v1, v2, N(p)} is a positive basis of R3. Given
a parametrization ϕ : U → ϕ(U) of M , with p = ϕ(x) and U connected, and
changing the sign of ϕ if necessary, we can assume that the set

{dϕ(x) · e1, dϕ(x) · e2, N(ϕ(x))}

is a positive basis of R3, for every x ∈ U . Thus, for each point p ∈ M ,
we can choose a parametrization ϕ : U → ϕ(U) of M , with p ∈ ϕ(U), such
that dϕ(x) : R2 → Tϕ(x)M is a positive linear isomorphism, for every x ∈ U .
Denote by A the cover of M by such parametrizations. If ϕ : U → ϕ(U) and
ψ : V → ψ(V ) are two parametrizations in A, with ϕ(U) ∩ ψ(V ) 6= ∅, then
ψ−1 ◦ ϕ has positive jacobian determinant everywhere, since d(ψ−1 ◦ ϕ)(x)
is the composite of two positive linear isomorphisms.

It follows from the proof of Theorem 1.4.7 that, given a point p ∈ M
and a parametrization ϕ : U → ϕ(U) of M , with p ∈ ϕ(U), we can always
consider an unit normal differentiable vector field N in a neighborhood of p
and given by (1.6). Thus, any regular surfaceM is always locally orientable.

Let us now look at some examples of orientable surfaces.

Example 1.4.8. Let P be the plane plane through the point p ∈ R3 which
contains the orthonormal vectors w1, w2 ∈ R3. Thus, a parametrization of
P is given by

ϕ(u, v) = p+ uw1 + vw2,

with (u, v) ∈ R2. In this case one has ϕu = w1 and ϕv = w2, therefore
N = w1 × w2 is an unit normal vector field along P.

Example 1.4.9. Consider the right cylinder C over the circle x2 + y2 = 1.
Then C admits a parametrization ϕ : U → R3 given by

ϕ(u, v) = (cosu sinu, v),

where
U = {(u, v) ∈ R2 : 0 < u < 2π and v ∈ R}.

14



In this case, we obtain

ϕu = (− sinu, cosu, 0) and ϕv = (0, 0, 1),

which implies that

N = ϕu × ϕv = (cosu, sinu, 0)

is an unit normal vector field to the cylinder C.

Example 1.4.10. The tangent plane to the unit sphere S2 ⊂ R3 at a point
p ∈ S2 is given by

TpS2 = p⊥,

where p⊥ = {v ∈ R3 : 〈v, p〉 = 0}. In fact, fix a vector v ∈ TpS2 with
v = α′(0), where α : (−ε, ε) → S2 is a differentiable curve, with α(0) = p.
Since α(t) ∈ S2 for every t ∈ (−ε, ε), one has ‖α(t)‖ = 1, for every t ∈ (−ε, ε).
This implies that

2〈α′(t), α(t)〉 = 0,

for every t ∈ (−ε, ε). For t = 0, we obtain 〈v, p〉 = 0. This shows that
TpS2 ⊂ p⊥ and hence the equality by dimensional reasons. Therefore, the
position vector field N : S2 → R3, N(p) = p, is an unit normal vector field
to the sphere, and this shows that S2 is orientable.

Example 1.4.11. Let M be a regular surface given as the inverse image
under a differentiable function f : R3 → R of a regular value c ∈ R, that
is, M = f−1(c). Fix a point p ∈ M , with p = (x0, y0, z0), and consider a
differentiable parametrized curve α : (−ε, ε)→M , with α(0) = p and

α(t) = (x(t), y(t), z(t)).

Since α(t) ∈M for every t ∈ (−ε, ε), we obtain

f(α(t)) = c, (1.7)

for every t ∈ (−ε, ε). By differentiating both sides of (1.7) with respect to t,
we see that at t = 0

0 =
d

dt
f(α(t))(0) =

∂f

∂x
(p) · dx

dt
(0) +

∂f

∂y
(p) · dy

dt
(0) +

∂f

∂z
(p) · dz

dt
(0)

=

〈(
∂f

∂x
(p),

∂f

∂y
(p),

∂f

∂z
(p)

)
,

(
dx

dt
(0),

dy

dt
(0),

dz

dt
(0)

)〉
= 〈gradf(p), α′(0)〉 = 〈gradf(p), v〉.
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This shows that the gradient vector of f at p ∈ M is orthogonal to TpM .
Therefore, the map

N(p) =
gradf

‖gradf‖
(p)

is an unit normal vector field to M , and thus M is orientable.
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Chapter 2

The local theory of surfaces

2.1 Derivatives of vector fields in R3

A vector field defined in an open set U ⊂ R3 is simply a differentiable
map X : U → R3 that maps each point p ∈ U in a vector X(p) ∈ R3. The
set of all vector fields defined in the open U ⊂ R3 will be denoted by X(U).
Under the natural operations

(X + Y )(p) = X(p) + Y (p)

(c ·X)(p) = c ·X(p)
,

this set X(U) is a real vector space. The next question we want to address
is to define a notion of derivative of vector fields along a vector, and more
generally, along another vector field.

Let Y ∈ X(U) be a vector field and fix a point p ∈ U . The directional
derivative of Y at p, along a vector v ∈ R3, is defined by

∇̃vY = dY (p) · v. (2.1)

Note that if α : (−ε, ε) → U is a differentiable curve with α(0) = p and
α′(0) = v, then

lim
t→0

Y (α(t))− Y (α(0))

t
=

d

dt
Y (α(t))|t=0

= dY (p) · v

= ∇̃vY.

This implies that the vector ∇̃vY depends only on the values of Y along
a differentiable curve through p with velocity v. We can extend the above
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definition. More precisely, given two vector fields X,Y ∈ X(U), we will
define another vector field ∇̃XY by(

∇̃XY
)
(p) = ∇̃X(p)Y. (2.2)

In the same way as in (2.1), the left-hand side of (2.2) depends only on the
values of Y along a differentiable curve through p with velocity X(p).

To understand more fully what the derivative in (2.1) means, it is useful
to bear in mind some terminology. Fix a point p ∈ U . Given a vector v ∈ R3,
we can define a natural function v : C∞(U)→ R by

v(f) =
d

dt
f(α(t))|t=0 =

∂f

∂v
(p) =

3∑
i=1

∂f

∂xi
(p) · vi, (2.3)

for every f ∈ C∞(U), where α : (−ε, ε) → U is a differentiable curve with
α(0) = p and α′(0) = v, and v = (v1, v2, v3). The function given in (2.3)
is called a derivation at p along the vector v. On the other hand, given a
vector field X ∈ X(U) and a function f ∈ C∞(U), we can define another
function X(f) : U → R by

X(f)(p) = X(p)(f) = df(p) ·X(p),

where X(p)(f) is the derivation at p along the vetor X(p) given in (2.3).

Therefore, motivated by these considerations, fixed a point p ∈ U and
given a vector field Y ∈ X(U), with Y = (Y1, Y2, Y3), we can write

∇̃vY =
d

dt
Y (α(t))|t=0 =

d

dt

(
Y1(α(t)), Y2(α(t)), Y2(α(t))

)
|t=0

=
(
v(Y1), v(Y2), v(Y3)

)
,

(2.4)

where α : (−ε, ε)→ U is a differentiable curve with α(0) = p and α′(0) = v.
In other words, the directional derivative of a vector field along a vector is
just a derivation of its coordinates functions related to that vector.

In the sequel, we will define a map

∇̃ : X(U)× X(U)→ X(U) (2.5)

that assigns to each pair X,Y ∈ X(U) the vector field ∇̃XY ∈ X(U) given
in (2.2). The map ∇̃ defined in (2.5) is called the derivative of the vector
fields in the open set U ⊂ R3.
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Proposition 2.1.1. The map ∇̃ satisfies the following basic properties:

(a) ∇̃fXY = f∇̃XY ,

(b) ∇̃XfY = X(f)Y + f∇̃XY ,

for every X,Y ∈ X(U) and f ∈ C∞(U).

Proof. Fix a point p ∈ U . By writing Y = (Y1, Y2, Y3), we obtain(
∇̃fXY

)
(p) = (f(p)XpY1, f(p)XpY2, f(p)XpY3)

= f(p)(XpY1, XpY2, XpY3)

= f(p)
(
∇̃XY

)
(p)

and (
∇̃XfY

)
(p) = (Xp(fY1), Xp(fY2), Xp(fY3))

=
(
X(f)Y1 + fX(Y1), . . . , X(f)Y3 + fX(Y3)

)
(p)

= Xp(f)(Y1, Y2, Y3) + f(p)∇̃XpY

=
(
X(f)Y + f∇̃XY

)
(p),

and this concludes the proof.

Proposition 2.1.2. Given X,Y ∈ X(U), there exists a unique vector field
Z ∈ X(U) such that

Z(f) = (XY − Y X)(f), (2.6)

for every f ∈ C∞(U).

Proof. Writing X = (X1, X2, X3) and Y = (Y1, Y2, Y3), we obtain

XY (f) = X

 3∑
j=1

Yj
∂f

∂xj

 =
3∑

i,j=1

(
Xi
∂Yj
∂xi

∂f

∂xj
+XiYj

∂2f

∂xi∂xj

)

and

XY (f) = Y

(
3∑
i=1

Xi
∂f

∂xi

)
=

3∑
i,j=1

(
Yj
∂Xi

∂xj

∂f

∂xi
+XiYj

∂2f

∂xj∂xi

)
.
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Thus,

(XY − Y X)(f) =

3∑
i,j=1

(
Xi
∂Yj
∂xi
− Yi

∂Xj

∂xi

)
∂f

∂xj
. (2.7)

Therefore, by defining the vector field Z = (Z1, Z2, Z3) by

Zj =
3∑
i=1

(
Xi
∂Yj
∂xi
− Yi

∂Xj

∂xi

)
,

it follows that Z is the unique vector field in U satisfying (2.6).

The vector field Z, given by Proposition 2.1.2, is called the Lie bracket
of X and Y , and it will be denoted by [X,Y ].

Proposition 2.1.3. The map ∇̃ satisfies the following properties:

(a) X〈Y,Z〉 = 〈∇̃XY, Z〉+ 〈Y, ∇̃XZ〉,

(b) ∇̃XY − ∇̃YX = [X,Y ],

for every X,Y, Z ∈ X(U). Conversely, if

∇ : X(U)× X(U)→ X(U)

is a map that satisfies the properties (a) and (b) above, then ∇ = ∇̃.

Proof. Part (a) follows from

X〈Y, Z〉(p) = X(p)

(
3∑
i=1

YiZi

)

=
3∑
i=1

(
X(p)(Yi)Zi + YiX(p)(Zi)

)
= 〈∇̃X(p)Y, Z(p)〉+ 〈Y (p), ∇̃X(p)Z〉,

for every p ∈ U . For part (b), writing ∇̃XY − ∇̃YX = (W1,W2,W3) and
using (2.4), we obtain

Wi = X(p)(Yi)− Y (p)(Xi) =

3∑
j=1

(
Xj

∂Yi
∂xj

(p)− Yj
∂Xi

∂xj
(p)

)
,
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and the formula (b) follows from (2.7). Conversely, suppose that a map
∇ : X(U) × X(U) → X(U) satisfies the properties (a) and (b). By part (a),
one has

X〈Y, Z〉 =
〈
∇XY,Z

〉
+
〈
Y,∇XZ

〉
(2.8)

Y 〈X,Z〉 =
〈
∇YX,Z

〉
+
〈
X,∇Y Z

〉
(2.9)

Z〈X,Y 〉 =
〈
∇ZX,Y

〉
+
〈
X,∇ZY

〉
, (2.10)

for every X,Y, Z ∈ X(U). Adding (2.8) and (2.9), subtracting (2.10) and
using part (b), we obtain

X〈Y, Z〉+ Y 〈X,Z〉 − Z〈X,Y 〉 =〈[X,Z], Y 〉+ 〈[Y,Z], X〉
+ 〈[X,Y ], Z〉+ 2

〈
∇YX,Z

〉
that is,

2
〈
∇YX,Z

〉
=X〈Y, Z〉+ Y 〈X,Z〉 − Z〈X,Y 〉 − 〈[X,Z], Y 〉
− 〈[Y, Z], X〉 − 〈[X,Y ], Z〉

(2.11)

The equation (2.11) shows that ∇ is uniquely determined by the inner prod-
uct 〈, 〉, and therefore 〈

∇YX,Z
〉
=
〈
∇̃YX,Z

〉
,

for every X,Y, Z ∈ X(U), and this shows that ∇ = ∇̃.

Proposition 2.1.4. For any vector fields X,Y, Z ∈ X(U), the following
holds:

∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z = 0. (2.12)

Proof. By definition, we have

∇̃X∇̃Y Z = ∇̃X(Y Z1, Y Z2, Y Z3) = (XY Z1, XY Z2, XY Z3)

and

∇̃Y ∇̃XZ = ∇̃Y (XZ1, XZ2, XZ3) = (Y XZ1, Y XZ2, Y XZ3).

This implies that

∇̃X∇̃Y Z − ∇̃Y ∇̃XZ = (XY Z1 − Y XZ1, XY Z2 − Y XZ2, XY Z3 − Y XZ3)

=
(
[X,Y ]Z1, [X,Y ]Z2, [X,Y ]Z3

)
= ∇̃[X,Y ]Z,

and this proves equation (2.12).
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2.2 Derivatives of vector fields on surfaces

A vector field along a regular surfaceM in R3 is just a differentiable map
X : M → R3 that maps each point p ∈ M in a vector X(p) ∈ R3. We say
that X is tangent to M if X(p) ∈ TpM for every p ∈ M . We also say that
X is normal to M if X(p) ⊥ TpM for every p ∈M . We denote by X(M) the
set of all tangent vector fields to M . In a similar way to the case of vector
fields in R3, the set X(M) becomes a real vector space endowed with the
natural operations.

Given two vector fields X,Y ∈ X(M), we define a map [X,Y ] : M → R3

by
[X,Y ](p) = [X̃, Ỹ ](p) (2.13)

for every p ∈ M , where X̃, Ỹ are differentiable extensions of X and Y ,
respectively, to an open set U ⊂ R3, with p ∈ U . We will see that (2.13) is
well defined and [X,Y ] ∈ X(M) for any choice of vector fields X,Y ∈ X(M).

Given a parametrization ϕ : U → ϕ(U) of M , we can write on the coor-
dinate neighborhood ϕ(U)

X =
2∑
i=1

ai
∂

∂xi
and Y =

2∑
j=1

bj
∂

∂xj
,

where ∂
∂x1

, ∂
∂x2

are the coordinate vector fields associated to ϕ.

Proposition 2.2.1. On the coordinate neighborhood ϕ(U), we have

[X,Y ] =
2∑

i,j=1

(
ai
∂bj
∂xi
− bi

∂aj
∂xi

)
∂

∂xj
. (2.14)

Proof. Consider the map φ : U × (−ε, ε)→ R3 given by

φ(x1, x2, x3) = ϕ(x1, x2) + x3N(ϕ(x1, x2)),

where N is an unit normal vector field to M along ϕ(U). Note that ϕ is
differentiable and

∂φ

∂x1
=

∂ϕ

∂x1
+ x3

∂N

∂x1
,

∂φ

∂x2
=

∂ϕ

∂x2
+ x3

∂N

∂x2
,

∂φ

∂x3
= N.
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Since ∂ϕ
∂x1

, ∂ϕ∂x2 , N are linearly independent, the same is true for ∂φ
∂x1

, ∂φ∂x2 ,
∂φ
∂x3

,
for sufficiently small ε > 0. Restricting the range U × (−ε, ε) if necessary, it
follows from the inverse function theorem that φ is a diffeomorphism between
U × (−ε, ε) and φ(U × (−ε, ε)). Thus, if

X̃ =

3∑
i=1

ai
∂

∂xi
and Ỹ =

3∑
j=1

bj
∂

∂xj

are differentiable extensions of X|ϕ(U) and Y |ϕ(U), respectivaly, it follows
from (2.7) that

[X̃, Ỹ ] =
3∑

i,j=1

(
ai
∂bj
∂xi
− bi

∂aj
∂xi

)
∂

∂xj
.

Therefore,

[X̃, Ỹ ]|ϕ(U) =
2∑

i,j=1

(
ai
∂bj
∂xi
− bi

∂aj
∂xi

)
∂

∂xj
,

and this concludes the proof.

Similarly as vector fields in R3, the vector field [X,Y ] ∈ X(M) will be
called the Lie bracket ofX and Y . It follows directly from (2.14) the following

Corollary 2.2.2. If ∂
∂x1

, ∂
∂x2

are the coordinate vector fields associated to a
parametrization ϕ of M , then[

∂

∂x1
,
∂

∂x2

]
= 0.

Example 2.2.3. In R2, with canonical coordinates (x, y), consider the vector
fields X = y ∂

∂y and Y = x ∂
∂y . Given a function f ∈ C∞(R2), we have

[X,Y ](f) =

[
y
∂

∂y
, x

∂

∂y

]
(f)

= yx
∂2f

∂y2
− x∂f

∂y
− xy∂

2f

∂y2

= −x ∂
∂y

(f) = −Y (f).

Therefore, in this case one has [X,Y ] = −Y .
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Let f : M → N be a diffeomorphism between two regular surfaces M
and N . Given a vector field X ∈ X(M), denote by f∗X the vector field in
N given by

(f∗X)(f(p)) = df(p) ·X(p),

for every p ∈M .

Corollary 2.2.4. If f : M → N is a diffeomorphism, then

[f∗X, f∗Y ] = f∗[X,Y ], (2.15)

for all X,Y ∈ X(M).

Proof. Given a parametrization ϕ : U → ϕ(U) of M , we can write X and Y
along ϕ(U) as

X =
2∑
i=1

ai
∂

∂xi
and Y =

2∑
j=1

bj
∂

∂xj
.

Let ψ : U → ψ(V ) be the map given ψ = f ◦ ϕ, where V = f(ϕ(U)). Since
ϕ is a parametrization of M and f is a diffeomorphism, it follows that ψ is
a parametrization of N , and the coordinate vector fields ∂

∂y1
, ∂
∂y2

associated
to ψ are given by

∂

∂yi
= ψ∗

∂

∂xi
, 1 ≤ i ≤ 2.

Thus, along ψ(V ) we have

ψ∗X =
2∑
i=1

ãi
∂

∂yi
and ψ∗Y =

2∑
j=1

b̃j
∂

∂yj
,

where ai◦ψ = ãi and bj ◦ψ = b̃j , and equation (2.15) follows from (2.14).

Given a tangent vector field X ∈ X(M) and a vector field Y along M ,
define (

∇̃XY
)
(p) =

(
∇̃
X̃
Ỹ
)
(p), (2.16)

for every p ∈ M , where X̃, Ỹ are differentiable extensions of X and Y ,
respectively. Since the right hand side of (2.16) does not depend on the
choice of the extensions X̃ and Ỹ , the vector field ∇̃XY is well defined.
Given X,Y ∈ X(M), we define a vector field ∇XY by

(∇XY ) (p) =
(
∇̃XY

)T
(p), (2.17)

where the right hand side of (2.17) denotes the tangent component of ∇̃XY
along the surface M .
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Proposition 2.2.5. The map ∇ : X(M) × X(M) → X(M) given in (2.17)
satisfies the following properties:

(a) ∇fXY = f∇XY ,

(b) ∇XfY = X(f)Y + f∇XY ,

(c) X〈Y,Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉,

(d) ∇XY −∇Y Z = [X,Y ],

for all X,Y, Z ∈ X(M) and every f ∈ C∞(N). Conversely, if a map
∇ : X(M)× X(M)→ X(M) satisfies properties (a)–(d) above, then ∇ = ∇.

Proof. Parts (a) and (b) follow by taking the tangent component of formulas
(a) and (b), respectively, of Proposition 2.1.1. Analogously, part (c) follows
by taking the tangent component of formula (c) of Proposition 2.1.3. Part (d)
follows directly of formula (d) of Proposition 2.1.3. The converse is entirely
analogous to Proposition 2.1.3.

Corollary 2.2.6. Let f : M → N be a local isometry between two regular
surfaces M and N . Then

f∗ (∇XY ) = ∇f∗Xf∗Y,

for every X,Y ∈ X(M).

Proof. Define a map ∇ : X(M)× X(M)→ X(M) by

∇XY = f−1∗ (∇f∗Xf∗Y ) .

A straightforward computation shows that ∇ satisfies properties (a)–(d) of
Proposition 2.2.5. For example, property (d) follows from

∇XY −∇YX = f−1∗
(
∇f∗Xf∗Y −∇f∗Y f∗X

)
= f−1∗

(
[f∗X, f∗Y ]

)
= f−1∗

(
f∗[X,Y ]

)
= [X,Y ],

using Corollary 2.2.4. Therefore, by the uniqueness of derivative it follows
that ∇ coincides with the derivative ∇ of M .
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