
Everything you wanted to know about Deep Learning for Computer Vision but were
afraid to ask

Moacir A. Ponti, Leonardo S. F. Ribeiro, Tiago S. Nazare
ICMC – University of São Paulo
São Carlos/SP, 13566-590, Brazil

Email: [ponti, leonardo.sampaio.ribeiro, tiagosn]@usp.br

Tu Bui, John Collomosse
CVSSP – University of Surrey

Guildford, GU2 7XH, UK
Email: [t.bui, j.collomosse]@surrey.ac.uk

Abstract—Deep Learning methods are currently the state-
of-the-art in many Computer Vision and Image Processing
problems, in particular image classification. After years of
intensive investigation, a few models matured and became
important tools, including Convolutional Neural Networks
(CNNs), Siamese and Triplet Networks, Auto-Encoders (AEs)
and Generative Adversarial Networks (GANs). The field is fast-
paced and there is a lot of terminologies to catch up for those
who want to adventure in Deep Learning waters. This paper
has the objective to introduce the most fundamental concepts
of Deep Learning for Computer Vision in particular CNNs,
AEs and GANs, including architectures, inner workings and
optimization. We offer an updated description of the theoretical
and practical knowledge of working with those models. After
that, we describe Siamese and Triplet Networks, not often
covered in tutorial papers, as well as review the literature
on recent and exciting topics such as visual stylization, pixel-
wise prediction and video processing. Finally, we discuss the
limitations of Deep Learning for Computer Vision.

Keywords-Computer Vision; Deep Learning; Image Process-
ing; Video Processing

I. INTRODUCTION

The field of Computer Vision was revolutionized in the
past years (in particular after 2012) due to Deep Learning
techniques. This is mainly due to two reasons: the availabil-
ity of labelled image datasets with millions of images [1],
[2], and computer hardware that allowed to speed-up compu-
tations. Before that, there were studies exploring hierarchical
representations with neural networks such as Fukushima’s
Neocognitron [3] and LeCun’s neural networks for digit
recognition [4]. Although those techniques were known to
Machine Learning and Artificial Intelligence communities,
the efforts of Computer Vision researchers during the 2000’s
was in a different direction, in particular using approaches
based on Scale-Invariant features, Bag-of-Features, Spatial
Pyramids and related methods [5].

After the publication of the AlexNet Convolutional Neural
Network Model [6], many research communities realized the
power of such methods and, from that point on, Deep Learn-
ing (DL) invaded the Visual Computing fields: Computer
Vision, Image Processing, Computer Graphics. Convolu-
tional Neural Networks (CNNs), Deep Belief Nets (DBNs),
Restricted Boltzmann Machines (RBMs) and Autoencoders

(AEs), started appearing as a basis for state-of-the-art meth-
ods in several computer vision applications (e.g. remote
sensing [7], surveillance [8], [9] and re-identification [10]).
The ImageNet challenge [1] played a major role in this
process, starting a race for the model that could beat the
current champion in the image classification challenge, but
also image segmentation, object recognition and other tasks.
In order to accomplish that, different architectures and
combinations of DBM were employed. Also, novel types of
networks – such as Siamese Networks, Triplet Networks and
Generative Adversarial Networks (GANs) – were designed.

Deep Learning techniques offer an important set of meth-
ods suited for tasks within the domains of digital visual
content. It is noticeable that those methods comprise a
diverse variety of models, components and algorithms that
may be dissimilar to what one may be used to in Computer
Vision. A myriad of keywords within this context makes the
literature in this field almost a different language: Feature
maps, Activation, Receptive Fields, Dropout, ReLu, Max-
Pool, Softmax, SGD, Adam, FC, Generator, Discriminator,
Shared Weights, etc. This can make it hard for a beginner
to understand and catch up with the recent studies.

There are DL methods we do not cover in this paper,
including Deep Belief Networks (DBN), Deep Boltzmann
Machines (DBM) and also those using Recurrent Neural
Networks (RNN), Reinforcement Learning and Long short-
term memory (LSTMs). We refer to [11]–[14] for DBN and
DBM-related studies, and [15]–[17] for RNN-related studies.

The paper is organized as follows:

• Section II provides definitions and prerequisites.
• Section III aims to present a detailed and updated

description of the DL’s main terminology, building
blocks and algorithms of the Convolutional Neural
Network (CNN) since it is widely used in Computer
Vision, including:

1) Components: Convolutional Layer, Activation
Function, Feature/Activation Map, Pooling, Nor-
malization, Fully Connected Layers, Parameters,
Loss Function;

2) Algorithms: Optimization (SGD, Momentum,



Adam, etc.) and Training;
3) Architectures: AlexNet, VGGNet, ResNet, Incep-

tion, DenseNet;
4) Beyond Classification: fine-tuning, feature extrac-

tion and transfer learning.
• Section IV describes Autoencoders (AEs):

1) Undercomplete AEs;
2) Overcomplete AEs: Denoising and Contractive;
3) Generative AE: Variational AEs

• Section V introduces Generative Adversarial Net-
works (GANs):

1) Generative Models: Generator/Discriminator;
2) Training: Algorithm and Loss Lunctions.

• Section VI is devoted to Siamese and Triplet Net-
works:.

1) SiameseNet with contrastive Loss;
2) TripletNet: with triplet Loss;

• Section VII reviews Applications of Deep Networks in
Image Processing and Computer Vision, including:

1) Visual Stilization;
2) Image Processing and Pixel-Wise Prediction;
3) Networks for Video Data: Multi-stream and C3D.

• Section VIII concludes the paper by discussing the
Limitations of Deep Learning methods for Computer
Vision.

II. DEEP LEARNING: PREREQUISITES AND DEFINITIONS

The prerequisites needed to understand Deep Learning
for Computer Vision includes basics of Machine Learning
(ML) and Image Processing (IP). Since those are out of the
scope of this paper we refer to [18], [19] for an introduction
in such fields. We also assume the reader is familiar with
Linear Algebra and Calculus, as well as Probability and
Optimization — a review of those topics can be found in
Part I of Goodfellow et al. textbook on Deep Learning [20].

Machine learning methods basically try to discover a
model (e.g. rules, parameters) by using a set of input data
points and some way to guide the algorithm in order to learn
from this input. In supervised learning, we have examples
of expected output, whereas in unsupervised learning some
assumption is made in order to build the model. However,
in order to achieve success, it is paramount to have a
good representation of the input data, i.e. a good set of
features that will produce a feature space in which an
algorithm can use its bias in order to learn. One of the
main ideas of Deep learning is to solve the problem of
finding this representation by learning it from the data: it
defines representations that are expressed in terms of other,
simpler ones [20]. Another is to assume that depth (in terms
of successive representations) allows learning a sequence of
parallel instructions that transforms an initial input vector,
mapping one space to another.

Deep Learning often involves learning hierarchical repre-
sentations using a series of layers that operate by processing
an input generating a series of representations that are
then given as input to the next layer. By having spaces of
sufficiently high dimensionality, such methods are able to
capture the scope of the relationships found in the original
data so that it finds the “right” representation for the task
at hand [21]. This can be seen as separating the multiple
manifolds that represent data via a series of transformations.

III. CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNNs or ConvNets)
are probably the most well known Deep Learning model
used to solve Computer Vision tasks, in particular im-
age classification. The basic building blocks of CNNs are
convolutions, pooling (downsampling) operators, activation
functions, and fully-connected layers, which are essentially
similar to hidden layers of a Multilayer Perceptron (MLP).
Architectures such as AlexNet [6], VGG [22], ResNet [23]
and GoogLeNet [24] became very popular, used as subrou-
tines to obtain representations that are then offered as input
to other algorithms to solve different tasks.

We can write this network as a composition of a sequence
of functions fl(.) (related to some layer l) that takes as input
a vector xl and a set of parameters Wl, and outputs a vector
xl+1:

f(x) = fL (· · · f2(f1(x1,W1);W2) · · · ),WL)

x1 is the input image, and in a CNN the most charac-
teristic functions fl(.) are convolutions. Convolutions and
other operators works as building blocks or layers of a
CNN: activation function, pooling, normalization and linear
combination (produced by the fully connected layer). In the
next sections we will describe each one of those building
blocks.

A. Convolutional Layer

A layer is composed of a set of filters, each to be
applied to the entire input vector. Each filter is nothing but
a matrix k × k of weights (or values) wi. Each weight is a
parameter of the model to be learned. We refer to [18] for
an introduction about convolution and image filters.

Each filter will produce what can be seen as an affine
transformation of the input. Another view is that each filter
produces a linear combination of all pixel values in a
neighbourhood defined by the size of the filter. Each region
that the filter processes is called local receptive field: an
output value (pixel) is a combination of the input pixels
in this local receptive field (see Figure 1). That makes the
convolutional layer different from layers of an MLP for
example; in a MLP each neuron will produce a single output
based on all values from the previous layer, whereas in a
convolutional layer, an output value f(i, x, y) is based on



Figure 1. A convolution processes local information centred in each
position (x, y): this region is called local receptive field, whose values
are used as input by some filter i with weights wi in order to produce a
single point (pixel) in the output feature map f(i, x, y).

a filter i and local data coming from the previous layer
centered at a position (x, y).

For example, if we have an RGB image as an input,
and we want the first convolutional layer to have 4 filters
of size 5 × 5 to operate over this image, that means we
actually need a 5× 5× 3 filter (the last 3 is for each colour
channel). Let the input image to have size 64×64×3, and a
convolutional layer with 4 filters, then the output is going to
have 4 matrices; stacked, we have a tensor of size 64×64×4.
Here, we assume that we used a zero-padding approach in
order to perform the convolution keeping the dimensions of
the image.

The most commonly used filter sizes are 5×5×d, 3×3×d
and 1× 1× d, where d is the depth of the tensor. Note that
in the case of 1× 1 the output is a linear combination of all
feature maps for a single pixel, not considering the spatial
neighbours but only the depth neighbours.

It is important to mention that the convolution operator
can have different strides, which defines the step taken
between each local filtering. The default is 1, in this case all
pixels are considered in the convolution. For example with
stride 2, every odd pixel is processed, skipping the others. It
is common to use an arbitrary value of stride s, e.g. s = 4 in
AlexNet [6] and s = 2 in DenseNet [25], in order to reduce
the running time.

B. Activation Function

In contrast to the use of a sigmoid function such as
the logistic or hyperbolic tangent in MLPs, the rectified
linear function (ReLU) is often used in CNNs after con-
volutional layers or fully connected layers [26], but can also
be employed before layers in a pre-activation setting [27].
Activation Functions are not useful after Pool layers because
such layer only downsamples the input data.

Figure 2 shows plots of those such functions: ReLU
cancels out all negative values, and it is linear for all positive

x

1

-1

tanh(x)

x

1

logistic(x)

(a) hyperbolic tangent (b) logistic

x

max[0, x]

1

-1

x

max[ax, x], a = 0.1

1

-1

(c) ReLU (d) PReLU

Figure 2. Illustration of activation functions, (a) and (b) are often used
in MultiLayer Perceptron Networks, while ReLUs (c) and (d) are more
common in CNNs. Note (d) with a = 0.01 is equivalent to Leaky ReLU.

values. This is somewhat related to the non-negativity con-
straint often used to regularize image processing methods
based on subspace projections [28]. The Parametric ReLU
(PReLU) allows small negative features, parametrized by
0 ≤ a ≤ 1 [29]. It is possible to design the layers so that a
is learnable during the training stage. When we have a fixed
a = 0.01 we have the Leaky ReLU.

C. Feature or activation map

Each convolutional neuron produces a new vector that
passes through the activation function and it is then called a
feature map. Those maps are stacked, forming a tensor that
will be offered as input to the next layer.

Note that, because our first convolutional layer outputs a
64×64×4 tensor, then if we set a second convolutional layer
with filters of size 3 × 3, those will actually be 3 × 3 × 4
filters. Each one independently processes the entire tensor
and outputs a single feature map. In Figure 3 we show an
illustration of two convolutional layers producing a feature
map.

D. Pooling

Often applied after a few convolutional layers, it down-
samples the image in order to reduce the spatial dimen-
sionality of the vector. The maxpooling operator is the
most frequently used. This type of operation has two main
purposes: first, it reduces the size of the data: as we will
show in the specific architectures, the depth (3rd dimension)
of the tensor often increases and therefore it is convenient
to reduce the first two dimensions. Second, by reducing



Figure 3. Illustration of two convolutional layers, the first with 4 filters 5× 5× 3 that gets as input an RGB image of size 64× 64× 3, and produces
a tensor of feature maps. A second convolutional layer with 5 filters 3× 3× 4 gets as input the tensor from the previous layer of size 64× 64× 4 and
produces a new 64× 64× 5 tensor of feature maps. The circle after each filter denotes an activation function, e.g. ReLU.

the image size it is possible to obtain a kind of multi-
resolution filter bank, by processing the input in different
scale spaces. However, there are studies in favour to discard
the pooling layers, reducing the size of the representations
via a larger stride in the convolutional layers [30]. Also,
because generative models (e.g. variational AEs, GANs, see
Sections IV and V) shown to be harder to train with pooling
layers, there is probably a tendency for future architectures
to avoid pooling layers.

E. Normalization

It is common also to apply normalization to both the
input data and after convolutional layers. In input data
preprocessing it is common to apply a z-score normalization
(centring by subtracting the mean and normalizing the
standard deviation to unity) as described by [31], which
can be seen as a whitening process. For layer normalization
there are different approaches such as the channel-wise layer
normalization, that normalizes the vector at each spatial
location in the input map, either within the same feature
map or across consecutive channels/maps, using L1-norm,
L2-norm or variations.

In AlexNet architecture (2012) [6] the Local Response
Normalization (LRN) is used: for every particular input pixel
(x, y) for a given filter i, we have a single output pixel
fi(x, y), which is normalized using values from adjacent
feature maps j, i.e. fj(x, y). This procedure incorporates
information about outputs of other kernels applied to the
same position (x, y).

However, more recent methods such as GoogLeNet [24]
and ResNet [23] do not mention the use of LRN. Instead,
they use Batch normalization (BN) [32]. We describe BN in
Section III-J.

F. Fully Connected Layer

After many convolutional layers, it is common to include
fully connected (FC) layers that work in a way similar to a
hidden layer of an MLP in order to learn weights to classify
the representation. In contrast to a convolutional layer, for
which each filter produces a matrix of local activation values,
the fully connected layer looks at the full input vector,
producing a single scalar value. In order to do that, it takes as
input the reshaped version of the data coming from the last
layer. For example, if the last layer outputs a 4 × 4 × 40
tensor, we reshape it so that it will be a vector of size
1 × (4 × 4 × 40) = 1 × 640. Therefore, each neuron in
the FC layer will be associated with 640 weights, producing
a linear combination of the vector. In Figure 4 we show an
illustration of the transition between a convolutional layer
with 5 feature maps with size 2×2 and an FC layer with m
neurons, each producing an output based on f(xTw + b),
in which x is the feature map vector, w are the weights
associated with each neuron of the fully connected layer,
and b are the bias terms.

The last layer of a CNN is often the one that outputs the
class membership probabilities for each class c using logistic
regression:

P (y = c|x;w; b) = softmaxc(x
Tw + b) =

ex
Twc+bc∑

j e
xTwj+bj

,

where y is the predicted class, x is the vector coming from
the previous layer, w and b are respectively the weights and
the bias associated with each neuron of the output layer.

G. CNN architecture and its parameters

Typical CNNs are organized using blocks of convolutional
layers (Conv) followed by an activation function (AF), even-
tually pooling (Pool) and then a series of fully connected



Figure 4. Illustration of a transition between a convolutional and a fully connected layer: the values of all 5 activation/feature maps of size 2 × 2 are
concatenated in a vector x and neurons in the fully connected layer will have full connections to all values in this previous layer producing a vector
multiplication followed by a bias shift and an activation function in the form f(xTw + b).

layers (FC) which are also followed by activation functions.
Normalization of data before each layer can also be applied
as we describe later in Section III-J.

In order to build a CNN we have to define the architecture,
which is given first by the number of convolutional layers
(for each layer also the number of filters, the size of
the filters and the stride of the convolution). Typically, a
sequence of Conv + AF layers is followed by Pooling (for
each Pool layer define the window size and stride that will
define the downsampling factor). After that, it is common to
have a number of fully connected layers (for each FC layer
define the number of neurons). Note that pre-activation is
also possible as in He et al. [27], in which first the data
goes through AF and then to a Conv.Layer.

The number of parameters in a CNN is related to the
number of weights we have to learn — those are basically
the values of all filters in the convolutional layers, all weights
of fully connected layers, as well as bias terms.
—Example: let us build a CNN architecture to work with
RGB input images with dimensions 64 × 64 × 3 in order
to classify images into 5 classes. Our CNN will have three
convolutional layers, two max pooling layers, and one fully
connected layer as follows:
• Conv 1 (Conv→ AF): 10 neurons 5× 5× 3

– outputs 64× 64× 10 tensor
• Max pooling 1: downsampling factor 4

– outputs 16× 16× 10 tensor
• Conv 2 (Conv→ AF): 20 neurons 3× 3× 10

– outputs 16× 16× 20 tensor
• Conv 3 (Conv→ AF): 40 neurons 1× 1× 20

– outputs 16× 16× 40 tensor
• Max pooling 2: downsampling factor 4

– outputs 4× 4× 40 tensor

• FC 1 (FC→ AF): 32 neurons.
– outputs 32 values

• FC 2 (output) (FC → AF): 5 neurons (one for each
class).

– outputs 5 values
Considering that each of the three convolutional layer’s

filters has p × q × d parameters, plus a bias term, and that
the FC layer has weights and bias term associated with each
value of the vector received from the previous layer than we
have the following number of parameters:

(10× [5× 5× 3 + 1] = 760) [Conv1]
+ (20× [3× 3× 10 + 1] = 1820) [Conv2]
+ (40× [1× 1× 20 + 1] = 840) [Conv3]
+ (32× [640 + 1] = 20512) [FC1]
+ (5× [32 + 1] = 165) [FC2]
= 24097

As the reader can notice, even a relatively small architec-
ture can easily have a lot of parameters to be tuned. In the
case of a classification problem we presented, we are going
to use the labelled instances in order to learn the parameters.
But to guide this process we need a way to measure how the
current model is performing and then a way to change the
parameters so that it performs better than the current one.

H. Loss Function

A loss or cost function is a way to measure how bad
the performance of the current model is given the current
input and expected output; because it is based on a training
set it is, in fact, an empirical loss function. Assuming we
want to use the CNN as a regressor in order to discriminate
between classes, then a loss `(y, ŷ) will express the penalty
for predicting some ŷ, while the true output value should



be y. The hinge loss or max-margin loss is an example
of this type of function that is used in the SVM classifier
optimization in its primal form. Let fi ≡ fi(xj ,W ) be a
score function for some class i given an instance xj and a
set o parameters W , then the hinge loss is:

`
(h)
j =

∑
c 6=yj

max
(
0, fc − fyj + ∆

)
,

where class yj is the correct class for the instance j. The
hyperparameter ∆ can be used so that when minimizing this
loss, the score of the correct class needs to be larger than the
incorrect class scores by ∆ at least. There is also a squared
version of this loss, called squared hinge loss.

For the softmax classifier, often used in neural networks,
the cross-entropy loss is employed. Minimizing the cross-
entropy between the estimated class probabilities:

`
(ce)
j = − log

(
efyj∑
k e

fk

)
, (1)

in which k = 1 · · ·C is the index of each neuron for the
output layer with C neurons, one per class.

This function takes a vector of real-valued scores to a
vector of values between zero and one with unitary sum.
There is an interesting probabilistic interpretation of mini-
mizing Equation 1 in which it can be seen as minimizing the
Kullback-Leibler divergence between two class distributions
in which the true distribution has zero entropy (since it has
a single probability 1) [33]. Also, we can interpret it as
minimizing the negative log likelihood of the correct class,
which is related to the Maximum Likelihood Estimation.

The full loss of some training set (a finite batch of data)
is the average of the instances’ xj outputs, f(xj ;W ), given
the current set of all parameters W :

L(W ) =
1

N

N∑
j=1

` (yj , f(xj ;W )) .

We now need to minimize L(W ) using some optimization
method.

– Regularization: there is a possible problem with
using only the loss function as presented. This is because
there might be many similar W for which the model is able
to correctly classify the training set, and this can hamper
the process of finding good parameters via minimization of
the loss, i.e. make it difficult to converge. In order to avoid
ambiguity of solution, it is possible to add a new term that
penalizes undesired situations, which is called regularization.
The most common regularization is the L2-norm: by adding
a sum of squares, we want to discourage individually large
weights:

R(W ) =
∑
k

∑
l

W 2
k,l

We then expand the loss by adding this term, weighted by
a hyperparameter λ to control the regularization influence:

L(W ) =
1

N

N∑
j=1

` (yj , f(xj ;W )) + λR(W ).

The parameter λ controls how large the parameters in W
are allowed to grow, and it can be found by cross-validation
using the training set.

I. Optimization Algorithms

After defining the loss function, we want to adjust the
parameters so that the loss is minimized. The Gradient
Descent is the standard algorithm for this task, and the
backpropagation method is used to obtain the gradient for
the sequence of weights using the chain rule. We assume the
reader is familiar with the fundamentals of both Gradient
Descent and backpropagation, and focus on the particular
case of CNNs.

Note that L(W ) is based on a finite dataset and because of
that we are computing Montecarlo estimates (via randomly
selected examples) of the real distribution that generates
the parameters. Also, recall that CNNs can have a lot of
parameters to be optimized, therefore needing to be trained
using thousands or millions of images (many current datasets
have more than 1TB of data). But if we have millions of
examples to be used in the optimization, then the Gradient
Descent is not viable, since this algorithm has to compute
the gradient for all examples individually. The difficulty here
is easy to see because if we try to run an epoch (i.e. a pass
through all the data) we would have to load all the examples
into a limited memory, which is not possible. Alternatives
to overcome this problem are described below, including the
SGD, Momentum, AdaGrad, RMSProp and Adam.

– Stochastic Gradient Descent (SGD): one possible
solution to accelerate the process is to use approximate
methods that goes through the data in samples composed
of random examples drawn from the original dataset. This
is why the method is called Stochastic Gradient Descent:
now we are not inspecting all available data at a time, but a
sample, which adds uncertainty in the process. We can even
compute the Gradient Descent using a single example at a
time ( a method often used in streams or online learning).
However, in practice, it is common to use mini-batches
with size B. By performing enough iterations (each iteration
will compute the new parameters using the examples in the
current mini-batch), we assume it is possible to approximate
the Gradient Descent method.

Wt+1 = Wt − η
B∑
j=1

∇L(W ;xB
j ),

in which η is the learning rate parameter: a large η will
produce larger steps in the direction of the gradient, while
a small value produces a smaller step in the direction of the



gradient. It is common to set a larger initial value for η, and
then exponentially decrease it as a function of the iterations.

In fact, SGD is a rough approximation, producing a non-
smooth convergence. Because of that, variants were pro-
posed to compensate for that, such as the Adaptive Gradient
(AdaGrad) [34], Adaptive learning rate (AdaDelta) [35] and
Adaptive moment estimation (Adam) [36]. Those variants
basically use the ideas of momentum and normalization, as
we describe below.

– Momentum: adds a new variable α to control the
change in the parameters W . It creates a momentum that
prevents the new parameters Wt+1 from deviating too much
from the previous direction:

Wt+1 = Wt + α(Wt −Wt−1) + (1− α) [−η∇L(Wt)] ,

where L(Wt) is the loss computed using some examples
using the current parameters Wt (often a mini-batch). Note
that the magnitude of the step for the iteration t+ 1 now is
also constrained by the step taken in the iteration t.

– AdaGrad: works by putting more weight on rare or
infrequent parameters. It creates a history of how much a
given parameter already changed the loss, accumulating the
individual gradients gt+1 = gt +∇L(Wt)

2. Then, the next
step is now scaled/normalized for each parameter:

Wt+1 = Wt −
η∇L(Wt)

2

√
gt+1 + ε

,

since this historical gradient is computed feature-wise, the
infrequent features will have more influence in the next
gradient descent step.

– RMSProp: computes running averages of recent
gradient magnitudes and normalizes using these average so
that loosely gradient values are normalized. It is similar
to AdaGrad, but here gt is computed by an exponentially
decaying average and not the simple sum of gradients:

gt+1 = γgt + (1− γ)∇L(Wt)
2

g is called the second order moment of ∇L (don’t confuse
it with momentum). The final parameter update is given by
adding the momentum:

Wt+1 = Wt + α(Wt −Wt−1) + (1− α)

[
− η∇L(Wt)√

gt+1 + ε

]
,

– Adam: uses an idea that is similar to AdaGrad and
RMSProp, but the momentum is used for the first and second
order moment so now we have α and γ to control the
momentum of respectively W and g. The influence of both
decays over time so that the step size decreases when it
approaches minimum. We use an auxiliary variable m for
clarity:

mt+1 = αt+1gt + (1− αt+1)∇L(Wt)

m̂t+1 =
mt+1

1− αt+1

m is called the first order moment of ∇L (don’t confuse it
with momentum) and m̂ is m after applying the decaying
factor. Then we need to compute the gradients g to use in
the normalization:

gt+1 = γt+1gt + (1− γt+1)∇L(Wt)
2

ĝt+1 =
gt+1

1− γt+1

g is called the second order moment of ∇L (again, don’t
confuse it with momentum). The final parameter update is
given by:

Wt+1 = Wt −
ηm̂t+1√
ĝt+1 + ε

J. Tricks for Training CNNs

– Initialization: random initialization of weights is
important to the convergence of the network. The Gaussian
distribution N (µ, σ) is often used to produce the random
numbers. However, for models with more than 8 convo-
lutional layers, the use of a fixed standard deviation (e.g.
σ = 0.01) as in [6] was shown to hamper convergence.
Therefore, when using rectifiers as activation functions it is
recommended to use µ = 0, σ =

√
2/nl, where nl is the

number of connections of a response of a given layer l; as
well as initializing all bias parameters to zero [29],.

– Minibatch size: due to the need of using SGD
optimization and variants, one must define the size of the
minibatch of images that is going to be used to train the
model taking into account memory constraints but also
the behaviour of the optimization algorithm. For example,
while a small batch size can make the loss minimization
more difficult, the convergence speed of SGD degrades
when increasing the minibatch size for convex objective
functions [37]. In particular, assuming SGD converges in
T iterations, then minibatch SGD with batch size B runs in
O(1/

√
BT + 1/T ).

However, increasing B is important to reduce the variance
of the SGD updates (by using the average of the loss), and
this, in turn, allows you to take bigger step-sizes [38]. Also,
larger minibatches are interesting when using GPUs, since it
gives better throughput by performing backpropagation with
data reuse using matrix multiplication (instead of several
vector-matrix multiplications), and needing fewer transfers
to the GPU. Therefore, it can be an advantage to choose
the batch size so that it fully occupies the GPU memory
and choose the largest experimentally found step size. While
popular architectures (as we will discuss in Section III-K)
use from 32 to 256 examples in the batch size, a recent
paper used a linear scaling rule for adjusting learning rates
as a function of minibatch size, also adding a warmup
scheme with large step-sizes in the first few epochs to avoid
optimization problems. By using 256 GPUs and a batch size
of 8192, Goyal et al. [39] were able to train a Residual
Network with 50 layers with the ImageNet in 1 hour.



– Dropout: a technique proposed by [40] that, during
the forward pass of the network training stage, randomly
deactivate neurons of a layer with some probability p (in
particular from FC layers). It has relationships with the Bag-
ging ensemble method [41] because, at each iteration of the
mini-batch SGD, the dropout procedure creates a randomly
different network by subsampling the activations, which is
trained using backpropagation. This method became known
as a form of regularization that prevents the network to
overfit. In the test stage, the dropout is turned off, and the
activations are re-scaled by p to compensate those activations
that were dropped during the training stage.

– Batch normalization (BN): also used as a regularizer,
it normalizes the a layer activations at each batch of input
data by maintaining the mean activation close to 0 (cen-
tering) and the activation standard deviation close to 1, and
using parameters γ and β to produce a linear transformation
of the normalized vector, i.e.:

BNγ,β(xi) = γ

(
xi − µB√
σ2
B + ε

)
+ β, (2)

in which γ and β are parameters that can be learned during
the backpropagation stage [32]. This allows for example to
adjust the normalization, and even restore the data back to
its un-normalized form, i.e. when γ =

√
σ2
B and β = µB .

BN became a standard in the recent years, often replacing
the use of both regularization and dropout (e.g. ResNet [23]
and Inception V3 [42] and V4).

– Data-augmentation: as mentioned previously, CNNs
often have a large set of parameters to be optimized, requir-
ing a huge number of training examples. Because it is very
hard to have a dataset with sufficient examples, it is common
to employ some type of data augmentation. Also, usually
images in the same dataset often have similar illumination
conditions, a low variance of rotation, pose, etc. Therefore,
one can augment the training dataset by many operations in
order to produce 5 to 10 times more examples [43] such as:
(i) cropping images in different positions — note that CNNs
often have a low-resolution image input (e.g. 224 × 224)
so we can find several cropped versions of an image with
higher resolution; (ii) flipping images horizontally — and
also vertically if it makes sense, e.g. in case of remote
sensing and astronomical images; (iii) adding noise [44];
(iv) creating new images by using PCA as in the Fancy PCA
proposed by [6]. Note that augmentation must be performed
preserving the labels.

– Pre-processing: the input data can be pre-processed
in several ways: (i) compute the average image for the whole
training data and subtracting it from each image; (ii) z-
score normalization (as mentioned in Normalization), (iii)
PCA whitening that first tries to decorrelate the data by
projecting zero-centered original data into the eigenbasis,
and then takes the data in the eigenbasis and divides every
dimension by the eigenvalue to normalize the scale.

– Fine-tuning: when you have a small dataset it can
be a challenge to train a CNN. Even data augmentation
can be insufficient since augmentation will create perturbed
versions of the same images. In this case, it is very useful
to use a model already trained in a large dataset (for
example the ImageNet dataset [1]), with initial weights that
were already learned. To obtain a trained model, adapt its
architecture to your dataset and re-enter training phase using
such dataset is a process called fine-tuning. Because it often
involves the use of a different dataset we discuss this in more
detail in Section III-L about Transfer Learning and Feature
Extraction.

K. CNN Architectures for Image Classification

There are many proposed CNN architectures for im-
age classification. We chose to cover those that contain
significant differences starting with AlexNet, all designed
for image classification (1000 classes) of ImageNet Chal-
lenge [1]. We refer also to Fukushima’s Neocognitron [3]
and LeNet [4], both important studies for the history of
Deep Learning in Computer Vision. We first describe each
architecture and later we show an overall comparison in
Table I.

– AlexNet [6]: was the champion model in ImageNet
Challenge 2012. With ∼ 60 million parameters and 650000
neurons, AlexNet was originally designed in two branches
allowing parallel processing. It uses Local Response nor-
malization, maxpooling with overlapping (window size 3,
stride 2), a batch size of 128 examples, momentum of 0.9
weight decay of 0.0005. They initialized the weights using
Gaussian-distributed random values with fixed σ = 0.01,
and bias to 1 for the 2nd, 4th and 5th convolutional layers,
and bias to 0 for the remaining layers. The learning rate
was initialized to 0.01 and arbitrarily dividing this learning
rate by 10 three times during the training stage. In Figure 5
we show a diagram of the layers and compare it with the
VGG-16, the latter is described next.

– VGG-Net [22]: this architecture was developed to
increase the depth while making all filters with at most
3 × 3 size. The rationale behind this is that 2 consecutive
3× 3 conv. layers will have an effective receptive field of
5 × 5, and 3 of such layers an effective receptive field of
7× 7 when combining the feature maps. The authors claim
that stacking 3 conv. layers with 3 × 3 filters instead of
using just one with filter size 7 × 7 has the advantage of
incorporating more rectification layers, making the decision
function more discriminative. Also, it incorporates 1 × 1
conv. layers that perform a linear projection of a position
(x, y) across all feature maps in a given layer. There are
two most commonly used versions of this CNN: VGG-16
and VGG-19, respectively with 16 weight layers and 19
weight layers. In Figure 5 we show a diagram of the layers
of VGG-16 and compare it with the AlexNet.



AlexNet architecture
22

4
×

2
24

im
ag

e

C
on

v1
:

96
fil

te
rs

11
×

1
1

M
ax

po
ol

in
g

1

C
on

v2
:

25
6

fil
te

rs
5
×

5

M
ax

po
ol

in
g

2

C
on

v3
:

3
84

fil
te

rs
3
×

3

C
on

v4
:

3
85

fil
te

rs
3
×

3

C
on

v5
:

25
6

fil
te

rs
3
×

3

M
ax

po
ol

in
g

3

FC
1

4
0
96

ne
ur

on
s

FC
2

40
9
6

ne
ur

on
s

FC
3

ou
tp

ut
10

00
ne

ur
on

s

22
4
×

2
24

im
ag

e

C
on

v1
:

64
fil

te
rs

3
×

3

C
on

v2
:

64
fil

te
rs

3
×

3

M
ax

po
ol

in
g

1

C
on

v3
:

1
28

fil
te

rs
3
×

3

C
on

v4
:

1
28

fil
te

rs
3
×

3

M
ax

po
ol

in
g

2

C
on

v5
:

2
5
6

fil
te

rs
3
×

3

C
on

v6
:

2
56

fil
te

rs
3
×

3

C
on

v7
:

25
6

fil
te

rs
1
×

1

M
ax

po
ol

in
g

3

C
on

v8
:

5
12

fil
te

rs
3
×

3

C
on

v9
:

5
12

fil
te

rs
3
×

3

C
on

v1
0:

51
2

fil
te

rs
1
×

1

M
ax

po
ol

in
g

4

C
on

v1
1:

51
2

fil
te

rs
3
×

3

C
on

v1
2:

51
2

fil
te

rs
3
×

3

C
on

v1
3:

5
12

fil
te

rs
1
×

1

M
ax

po
ol

in
g

5

FC
1

40
9
6

ne
ur

on
s

FC
2

4
09

6
ne

ur
on

s

FC
3

ou
tp

ut
10

00
ne

ur
on

s

VGG-16 architecture

Figure 5. Outline of CNN architectures: AlexNet with variable filter sizes
(top), and VGG-16 with fixed 3× 3 filter sizes (bottom).

During training, the batch size used is 256. LRN is
not used since it shows no classification improvement but
increased running time. Maxpooling uses window size 2 and
stride 2. Training was regularized by weight decay using L2
regularization λ = 0.0005, and dropout with 0.5 ratio for
the first two FC layers. Learning rate and initialization were
similar to those used in AlexNet, but all bias parameters
were set to 0 and an initialization followed also a pretraining
approach.

– Residual Networks (ResNet) [23]: the study describ-
ing ResNets raises the question of whether we really get
better networks by simply stacking more layers. At the time
of the publication VGG-19 was considered “very deep”, and
the authors show that, although depth seems to be correlated
with better results, in practice, when increasing the number
of layers, the accuracy first saturates and then starts to
degrade rapidly and fail to even work in the training set,
therefore underfitting.

He et al. [23] claim that this could, in fact, be an
optimization problem, and propose the use of residual
blocks for networks with 34 to 152 layers. Those blocks
are designed to preserve the characteristics of the original
vector x before its transformation by some layer fl(x) by
skipping weight layers and performing the sum fl(x) + x.
In Figure 6 we show a diagram of three different versions
of such blocks, and in Figure 7 the ResNet architecture
with 34 layers that uses the residual block and residual
block with pooling. The authors claim that, because the
gradient is an additive term, it is unlikely to vanish even with
many layers. Interestingly, this architecture does not contain
any FC hidden layers. After the last convolution layer, an
Average pooling is computed followed by the output layer.

The bottleneck blocks (Figure 6-(c)) are designed to
compress the depth of the input feature map via 1 × 1

x

weights

weights

f(x)

+

f(x) + x

ReLU

ReLU

identity

x

weights + pooling

weights

f(x)

+

f(x) + p(x)

ReLU

ReLU

pooling

x with d = 256

64, 1× 1

64, 3× 3

256, 1× 1

f(x)

+

f(x) + x

ReLU

ReLU

ReLU

(a) residual block (b) with pooling (c) bottleneck

Figure 6. Modules to preserve the characteristics the original vector
(identity) allows the vector to skip weight layers, typically skipping 2 layers:
(a) the original vector x before its modification by weights is summed with
its transformed version f(x); (b) when some layer also include pooling
operation, the dashed line indicates the original vector needed pooling to
be summed; (c) in the bottleneck module illustrated, the depth (256) of the
input is reduced by the first 1×1 layer of 64 filters and then restored back
to 256 by the third layer.

convolutions with a reduced number of filters, and then
restore its depth by adding another layer of containing a
number of filters 1×1 equal to the depth of the input feature
map. The bottleneck blocks are used in ResNet with 50, 101
and 152 layers. For example, the ResNet-50 is basically the
ResNet-34 replacing all residual blocks (each containing 2
weight layers) with bottleneck blocks (each has 3 weight
layers).

For the ImageNet training the authors adopt only Batch
Normalization (BN) without regularization, dropout or nor-
malization; data augmentation was performed using crops,
horizontal flip and Fancy PCA; they also preprocessed the
images by average subtraction. The batch size used was 256
and the remaining parameters are similar to the previously
described methods as shown in Table I.

– GoogLeNet [24] and Inception [42]: the GoogLeNet
as proposed by [24] and the VGGNet [22] achieved similar
performances in the 2014 ImageNet challenge [2]. However,
the GoogLeNet received attention due to its architecture
based on modules called Inception (see Figure 8). Later
improvements in this model are called Inception archi-
tectures such as the Inception V3 presented by [42], in
which the authors also discuss design principles of CNN
architectures including: (i) gentle decrease of representation
size from input to output; (ii) use of higher dimensional
representations per layer (and consequently more activation
maps); (iii) use of lower dimensional embeddings using
1× 1 convolutions before spatial convolutions; (iv) balance
of width (number of filters per layer) and depth (number of
layers).

Recently, the same authors incorporated ideas from
ResNets, producing many variants including Inception V4
and Inception-ResNet [45]. Here, for didactic purposes, we



2
24
×

22
4

im
ag

e

C
on

v1
:

6
4

,7
×

7,
pl
/2

M
ax

po
ol

in
g
/2

C
on

v2
:

64
,3
×

3

C
on

v3
:

64
,3
×

3

C
on

v4
:

64
,3
×

3

C
on

v5
:

64
,3
×

3

C
on

v6
:

64
,3
×

3

C
on

v7
:

64
,3
×

3

C
on

v8
:

12
8
,3
×

3,
pl
/
2

C
on

v9
:

12
8
,3
×

3

C
on

v1
0:

12
8
,3
×

3

C
on

v1
1:

12
8
,3
×

3

C
on

v1
2:

12
8
,3
×

3

C
on

v1
3:

12
8
,3
×

3

C
on

v1
4:

12
8
,3
×

3

C
on

v1
5:

12
8
,3
×

3

C
on

v1
6:

25
6
,3
×

3,
pl
/
2

C
on

v1
7:

25
6
,3
×

3

C
on

v1
8:

25
6
,3
×

3

C
on

v1
9:

2
56

,3
×

3

C
on

v2
0:

25
6

3
×

3

C
on

v2
1:

2
56

,3
×

3

C
on

v2
2:

25
6
,3
×

3

C
on

v2
3:

25
6
,3
×

3

C
on

v2
4:

25
6
,3
×

3

C
on

v2
5:

25
6
,3
×

3

C
on

v2
6:

25
6
,3
×

3

C
on

v2
7:

25
6
,3
×

3

C
on

v2
8:

51
2
,3
×

3,
pl
/
2

C
on

v2
9:

51
2,

3
×

3

C
on

v3
0:

51
2
,3
×

3

C
on

v3
1:

51
2
,3
×

3

C
on

v3
2:

5
1
2

3
×

3

C
on

v3
3:

51
2
,3
×

3

A
ve

ra
ge

po
ol

in
g

FC
ou

tp
ut

1
00

0
ne

ur
on

s

Figure 7. Outline of ResNet-34 architecture. Solid lines indicate identity mappings skipping layers, while dashed lines indicate identity mappings with
pooling in order to match the size of the representation in the layer it skips to.

x

1× 1

5× 5

1× 1

3× 3

Pool

1× 1

1× 1

Feature maps concatenation

x

1× 1

3× 3

3× 3

1× 1

3× 3

Pool

1× 1

1× 1

Feature maps concatenation

(a) Original Inception (b) Inception v3-1

x

1× 1

1× k

k × 1

1× k

k × 1

1× 1

1× k

k × 1

Pool

1× 1

1× 1

Feature maps concatenation

x

1× 1

3× 3

1× 3 3× 1

1× 1

1× 3 1× 3

Pool

1× 1

1× 1

Feature maps concatenation

(c) Inception v3-2 (d) Inception v3-3

Figure 8. Inception modules (a) traditional; (b) replacing the 5 × 5 by
two 3× 3 convolutions; (c) with factorization of k× k convolution filters,
(d) with expanded filter bank outputs.

focus on Inception V3 since the V4 is basically a variant of
the previous one.

The Inception module breaks larger filters (e.g. 5 × 5,
7 × 7) that are computationally expensive, into smaller
consecutive filters that have the same effective receptive
field. Note that this idea was already explored in VG-
GNet. However, the Inception explores this idea stacking
different sequences (in parallel) of small convolutions and
concatenates the outputs of the different parallel sequences.
The original Inception [24] is shown in Figure 8-(a), while
in Inception V3 it follows the design principle (iii) and

proposes to factorize a 5 × 5 convolution into two 3 × 3
as in Figure 8-(b). In addition, two other modules are
proposed: a factorization module for k × k convolutions as
in Figure 8-(c), and an expanded filter bank to increase the
dimensionality of representations as shown in Figure 8-(d).

We show the Inception V3 architecture in Figure 9: the
first layers include regular convolution layers and pooling,
followed by different Inception modules (type V3-1,2,3). We
highlight the size of the representation in some transitions
of the network. This is important because to show that
while the first two dimensions shrink, the third increases
following the principles (i), (ii) and (iv). Note that the
Inception modules type V3-2 are used with size k = 7 for
an input representation of spatial size 17×17. The Inception
modules type V3-3, that output a concatenation of 6 feature
maps per module has the intention of increasing the depth
of the feature maps in a coarser scale (spatial size 8 × 8).
Although this architecture has 42 layers (considering internal
convolutions layers inside Inception modules), because of
the factorization is has a small size in terms of parameters.

For Inception V3 the authors also employ a label-
smoothing regularization (LSR) that tries to constrain the
last layer to output a non-sparse solution. Given an input
example, let k be the index for all classes of a given
problem, Y (k) be the ground truth for each class k, Ŷ (k)
the predicted output and P (k) a prior for each class. The
LSR can be seen as using a pair of cross-entropy losses,
one that penalizes the incorrect label, and a second that
penalizes it to deviate from the prior label distribution, i.e.
(1 − γ)`(Y (k), Ŷ (k)) + γ`(P (k), Ŷ (k)). The parameter γ
controls the influence of the LSR and P represent the prior
of a given class.

To train the network for ImageNet, they used LSR with
a uniform prior, i.e. the same for all classes: P (k) =
1/1000∀k for the ImageNet 1000-class problem and γ =
0.1, BN is applied in both convolutional and FC layers.
The optimization algorithm is the RMSProp. All other
parameters are standard. They also used gradient clipping
with threshold 2.

– DenseNet [25]: inspired by ideas from both ResNets
and Inception, the DenseNet introduces the DenseBlock,
a sequence of layers where each layer l takes as input



2
99
×

29
9
×

3
im

ag
e

C
on

v1
:

3
2,

3
×

3,
s

=
2

C
on

v2
:

32
,3
×

3,
s

=
1

C
on

v3
:

6
4

,3
×

3
,s

=
1

M
ax

po
ol

in
g

3
×

3,
s

=
2

C
on

v4
:

12
8

fil
te

rs
3
×

3

C
on

v5
:

2
56

fil
te

rs
3
×

3

C
on

v6
:

2
56

fil
te

rs
3
×

3

C
on

v7
:

25
6

fil
te

rs
1
×

1

In
ce

pt
io

n
V

3-
1

In
ce

pt
io

n
V

3-
1

In
ce

pt
io

n
V

3-
1

In
ce

pt
io

n
V

3-
2

In
ce

pt
io

n
V

3-
2

In
ce

pt
io

n
V

3-
2

In
ce

pt
io

n
V

3-
2

In
ce

pt
io

n
V

3-
2

In
ce

pt
io

n
V

3-
3

In
ce

pt
io

n
V

3-
3

M
ax

po
ol

in
g

8
×

8

FC
1

20
48

ne
ur

on
s

FC
2

ou
tp

ut
1
00

0
ne

ur
on

s

35× 35× 288 17× 17× 768 8× 8× 1280 8× 8× 2048 1× 1× 2048

Figure 9. Outline of Inception V3 architecture. Convolutions do not use zero-padding except for Conv3 (in gray). The stride is indicated by s. We
highlight the size of the representations before and after the Inception modules types, and also after the last max pooling layer.

all preceding feature maps x1,x2, · · · ,xl−1 concatenated.
Thus, each layer produces an output which is a function of
all previous feature maps, i.e.:

xl = Hl ([x1,x2, · · · ,xl−1]) .

Hence, while regular networks with L layers have L con-
nections, each DenseBlock (illustrated in Figure 10) has a
number of connections following an arithmetic progression,
i.e. L(L+1)

2 direct connections. The DenseNet is a concate-
nation of multiple inputs of Hl() into a single tensor. Each
Hl is composed of three operations, in sequence: batch
normalization (BN), followed by ReLU and then a 3 × 3
convolution. This unusual sequence of operations is called
pre-activation unit, was introduced by He et al. [27] and
has the property of yielding a simplified derivative for each
unit that is unlikely to be canceled out, which would in turn
improves the convergence process.

Transition layers are layers between DenseBlocks com-
posed of BN, a 1 × 1 Conv.Layer, followed by a 2 × 2
average pooling with stride 2.

Variations of DenseBlocks: they also experimented using
bottleneck layers, in this case each DenseBlock is a sequence
of operations: BN, ReLU, 1 × 1 Conv., followed by BN,
ReLU, 3 × 3 Conv. This variation is called DenseNet-B.
Finally, a compression method is also proposed to reduce the
number of feature maps at transition layers with a factor θ.
When bottleneck and compression are combined they refer
the model as DenseNet-BC.

Each layer has many input feature maps; if each Hl

produces k feature maps, then the lth layer has k0+k×(l−1)
input maps, where k0 is the number of channels in the
input image. However, the authors claim that DenseNet
requires fewer filters per layer [25]. The number filters k
is a hyperparameter defined in DenseNet as the growth rate.
For the ImageNet dataset k = 32 is used. We show the
outline of the DenseNet architecture used for ImageNet in
Figure 11.

– Comparison and other archictectures: in order to
show an overall comparison of all architectures described,
we listed the training parameters, size of the model and top1
error in the ImageNet dataset for AlexNet, VGGNet, ResNet,
Inception V3 and DenseNet in Table I.

In
pu

t

B
N

+
R

eL
U

+
C

on
v:
H

1

B
N

+
R

eL
U

+
C

on
v:
H

2

B
N

+
R

eL
U

+
C

on
v:
H

3

B
N

+
R

eL
U

+
C

on
v:
H

4

B
N

+
R

eL
U

+
C

on
v:
H

5

Tr
an

si
tio

n
(B

N
+C

on
v+

Po
ol

)

Figure 10. Illustration of a DenseBlock with 5 functions Hl and a
Transition Layer.

Finally, we want to refer to another model that was
designed to be small, compressing the representations, the
SqueezeNet [46], based on AlexNet but with 50× fewer
parameters and additional compression so that it could, for
example, be implemented in embedded systems.

L. Beyond Classification: fine-tuning, feature extraction and
transfer learning

When one needs to work with a small dataset of images,
it is not viable to train a Deep Network from scratch, with
randomly initialized weights. This is due to the high number
of parameters and layers, requiring millions of images,
plus data augmentation. However, models such as the ones
described in this paper (e.g. VGGNet, ResNet, Inception),
that were trained with large datasets such as the ImageNet,
can be useful even for tasks other than classifying the images
from that dataset. This is because the learned weights can be
meaningful for other datasets, even from a different domain
such as medical imaging [47].

In this context, by starting with some model pre-trained
with a large dataset, we can use the networks as Feature
Extractors [48] or even to achieve Transfer Learning [49].
It is also possible to perform Fine-tuning of a pre-trained
model to create a new classifier with a different set of



In
pu

t
Im

ag
e

C
on

v1
:

1
6

,7
×

7
,s

=
2

M
ax

po
ol

3
×

3,
s

=
2

D
B

-B
1:

4
×

6

Tr
an

si
tio

n
L

ay
er

1

D
B

-B
2:

4
×

1
2

Tr
an

si
tio

n
L

ay
er

2

D
B

-B
3:

2
4
,3

2
,4

8,
6
4

Tr
an

si
tio

n
L

ay
er

3

D
B

-B
4:

16
,3

2
,3

2,
48

G
lo

ba
l

A
vg

po
ol

7
×

7

FC
ou

tp
ut

1
00

0
ne

ur
on

s

112× 112 56× 56 28× 28 14× 14 7× 7 7× 7 1× 1

Figure 11. Outline of DenseNet used for ImageNet. The growth rate is k = 32, each Conv.layer corresponds to BN-ReLU-Conv(1 × 1) + BN-ReLU-
Conv(3× 3). A DenseBlock (DB) 4× 6 means there are 4 internal layers with 6 filters each. The arrows indicate the size of the representation between
layers.

Table I
COMPARISON OF CNN MODELS IN TERMS OF THE PARAMETERS USED TO TRAIN WITH THE IMAGENET DATASET (INCLUDING AND THEIR

ARCHITECTURES

Training Parameters Model ImageNet
CNN Batch size Learn.rate Optm.alg. Optm.param. Epochs Regularization # Layers Size top-1 error

AlexNet 128 0.01 SGD α = 0.9 90 Dropout 8 240MB 37.5%
VGGNet 256 0.01 SGD α = 0.9 74 L2 + Dropout 16-19 574MB (19 lay.) 24.4%
ResNet 256 0.1 SGD α = 0.9 120 BN 34-152 102MB (50 lay.) 19.3%

Inception V3 32 0.045 RMSP α, γ = 0.9 100 BN + LSR 42 96MB 18.7%
DenseNet 128 0.1 SGD α = 0.9 100 BN 40-250 30MB (161 lay.) ∼ 18.7%

classes.
In order to perform the aforementioned tasks, there are

many options that involve freezing layers (not allowing them
to change), discarding layers, including new layers, etc. As
we describe next for each case.

– Building a new CNN classifier via Fine-Tuning: it is
likely that a new dataset has different classes when compared
with the dataset originally used to train the model (e.g the
1000-class ImageNet dataset). Thus, if we want to create a
CNN classifier for our new dataset based on a pre-trained
model, we have to build a new output layer with the number
of neurons equal to the number of classes. We then design
a training set using examples from our new dataset and use
them to adjust the weights of our new output layer.

There are different options involving fine-tuning, for ex-
ample: (i) allow the weights from all layers to be fine-tuned
with the new dataset (not only the last layer), (ii) freeze some
of the layers, and allow just a subset of layers to change, (iii)
create new layers randomly initialized, replacing the original
ones. The strategy will depend on the scenario. Usually, the
approach (ii) is the most common, freezing the first layers,
but allowing weights of deeper layers to adapt.

– CNN-based Feature Extractor: in this scenario, it is
possible to make use of pre-trained CNNs even when the
dataset is composed of unlabelled (e.g. in clustering prob-
lems) or only partially labelled examples (e.g. in anomaly
detection problems), in which without label information it
is not possible to fine-tuning the weights [50].

In order to extract features a common approach is to
perform a forward pass with the images and then use the fea-
ture/activation maps of some arbitrary layer as features [48].
For example, using an Inception V3 network, one could get
the 1×1×2048 output from the last Max Pooling layer (see

Figure 9), ignoring the output layer. This set of values can
be seen as a feature vector with 2048 dimensions to be an
input for another classifier, such as the SVM for example.
If a more compact representation is needed, one can use
dimensionality reduction methods or quantization based on
PCA [51] or Product Quantization [52], [53].

– CNN as a building block: pre-trained networks can
also work as a part of a larger architecture. For example
in [54] pre-trained networks for both photo and sketch
images are used to compose a triplet network. We discuss
those type of architectures in Section VI.

IV. AUTOENCODERS (AES)

An AE is a neural network that aims to learn to approx-
imate an identity function. In other words, when we feed
an AE with a training example x it tries to generate and
output x̂ that is as similar as possible to x. At first glance,
it may seem like such task is trivial: what would be the
utility of the AE if it just tries to learn the same data we
already have as input? In fact, we are not exactly interested
in the output itself, but rather on the representations learned
in other layers of the network. This is because the AEs are
designed in such way that they are not able to learn a dumb
copy function. Instead, they often discover useful intrinsic
data properties.

From an architectural point of view, an AE can be
divided into two parts: an encoder f and a decoder g. The
former takes the original input and creates a restricted (more
compact) representation of it – we call this representation
code. Then, the latter takes this code and tries to reconstruct
the original input from it (See Figure 12).

Because the code is a limited data representation, an
AE cannot learn how to perfectly copy its input. Instead,



input x Encoder Code Decoder output x̂

Figure 12. General structure of AEs.

it tries to learn a code that grasps valuable knowledge
regarding the structure of the data. In summary, we say
that an AE generalizes well when it understands the data-
generating distribution – i.e. it has a low reconstruction error
for data generated by such mechanism, while having a high
reconstruction error for samples that were not produced by
it [55].

Convolutional AEs: one can build Convolutional AEs
by replacing the fully connected layers of a traditional AE
with convolutional layers. Those models are useful because
they do not need labelled examples and can be designed to
obtain hierarchical feature extraction by making use of the
autoencoder architecture. Masci et al. [56] described Convo-
lutional Autoencoders for both unsupervised representation
learning (e.g. to extract features that can be used in shallow
or traditional classifiers) and also to initialize weights of
CNNs in a fast and unsupervised way.

Now that we presented the basic structure of an AE and
saw the importance of having a limited representation of
the data, we give a more in depth explanation concerning
how to restrict the generated code. Basically, there are
two main ways of achieving this goal: by constructing an
undercomplete AE or an overcomplete regularized AE.

A. Undercomplete AEs

In this case the AE has a code that is smaller than its
input. Therefore, this code can not hold a complete copy of
the input data. To train this model we minimize the following
loss function:

L(x, g(f(x))), (3)

where L is a loss function (e.g. mean squared error), x is
an input sample, g represents the decoder, f represents the
decoder, h = f(x) is the code generated by the encoder
and x̂ = g(f(x)) is the reconstructed input data. Let
the decoder f() be linear, and L() be the mean squared
error, then the undercomplete AE is able to learn the same
subspace as the PCA (Principal Component Analysis), i.e
the principal component subspace of the training data [20].
Because of this type of behaviour AEs were often employed
for dimensionality reduction.

To illustrate a possible architecture, we show an example
of a undercomplete AE in Figure 13, in which we now have
the encoder and the decoder composed of two layers each
so that the code is computed by h = f(x) = f2(f1(x))),
and the output by x̂ = g(x) = g2(g1(h))). Note that, by
allowing the functions to be nonlinear, and adding several

layers we are increasing the capacity of the AE. In those
scenarios, despite the fact that their code is smaller than
the input, undercomplete AE still can learn how to copy
the input, because they are given too much capacity. As
stated in [20], if the encoder and the decoder have enough
capacity we could learn a one-dimensional code such that
every training sample xi is mapped to a single neuron in
the bottleneck layer using the encoder. Next, the decoder
maps this code back to the original input. This particular
example – despite not happening in practice – illustrates the
problems we may end-up having if an undercomplete AE
has too much capacity.

L
1:

in
pu

t
x

,s
iz

e
d

L
2:
d
/2

ne
ur

on
s,
f 1

L
3:
d
/4

ne
ur

on
s,
f 2

co
de
h

L
4:
d
/
4

ne
ur

on
s,
g 1

L
5:
d
/
2

ne
ur

on
s,
g 2

L
6:

ou
tp

ut
x̂

,s
iz

e
d

f2(f1(x))) g2(g1(h))

Figure 13. An illustration of a undercomplete AE architecture with:
input x, two layers for the encoder which is a sequence of two functions
f1(f2(.)) producing the code h, followed by two layers for the decoder
which is a sequence of two functions g1(g2(.)) producing the output x̂.

B. Overcomplete regularized AEs

Differently from undercomplete AEs, in overcomplete
AEs the code dimensionality is allowed to be greater than
the input size, which means that in principle the networks
are able to copy the input without learning useful properties
from the training data. To limit their capability of simply
copying the input we can either use a different loss function
via regularization (sparse autoencoder) or add noise to the
input data (denoising autoencoder).

– Sparse autoencoder: if we decide to use a different
loss function we can regularize an AE by adding a sparsity
constraint to the code, Ω(h) to Equation 3 as follows:

L(x, g(f(x))) + Ω(f(x)).

Thereby, because Ω favours sparse codes, our AE is pe-
nalized if it uses all the available neurons to form the
code h. Consequently, it would be prevented from just
coping the input. This is why those models are known as
sparse autoencoders. A possible regularization would be
an absolute value sparcity penalty such as:

L(x, g(f(x))) + Ω(h) = L(x, g(f(x))) + λ
∑
i

|hi|,

for all i values of the code.



– Denoising autoencoder: we can regularize an AE by
disturbing its input with some kind of noise. This means
that our AE has to reconstruct an input sample x given a
corrupted version of it x̃. Then each example is a pair (x, x̃)
and now the loss is given by the following equation:

L(x, g(f(x̃))).

By using this approach we restrain our model from copy-
ing the input and force it to learn to remove noise and, as a
result, to gain valuable insights on the data distribution. AEs
that use such strategy are called denoising autoencoders
(DAEs).

In principle, the DAEs can be seen as MLP networks that
are trained to remove noise from input data. However, as
in all AEs, learning an output is not the main objective.
Therefore, DAEs aim to learn a good internal representation
as a side effect of learning a denoised version of the
input [57].

– Contractive autoencoder: by regularizing the AE
using the gradient of the input x, we can learn functions
so that the code rate of change follows the rate of change
in the input x. This requires a different form for Ω that now
depends also on x such as:

Ω(x, h) = λ
∑
i

∥∥∥∥∂h∂x
∥∥∥∥2
F

,

i.e. the squared Frobenius norm of the Jacobian matrix of
partial derivatives associated with the encoder function. The
contractive autoencoder, or CAE, has theoretical connec-
tions with denoising AEs and manifold learning. In [58] the
authors show that denoising AEs make the reconstruction
function to resist small and finite perturbations of x, while
contractive autoencoders make the function resist infinitesi-
mal perturbations of x.

The name contractive comes from the fact that the CAE
favours the mapping of a neighbourhood of input points (x
and its perturbed versions) into a smaller neighbourhood of
output points (thus locally contracting), warping the space.
We can think of the Jacobian matrix J at a point x as a
linear approximation of a nonlinear encoder f(x). A linear
operator is said to be contractive if the norm of Jx is kept
less than or equal to 1 for all unit-norm of x, i.e. if it
shrinks the unit sphere around each point. Therefore the
CAE encourages each of the local linear operators to become
a contraction.

In addition to the contractive term, we still need to
minimize the reconstruction error, which alone would lead
to learning the function f() as the identity map. But the
contractive penalty will guide the learning process so that we
have most derivatives ∂f(x)

∂x approaching zero, while only a
few directions with a large gradient for x that rapidly change
the code h. Those are likely the directions approximating
the tangent planes of the manifold. These tangent directions

ideally correspond to real variations of the data. For instance,
if we use images as input, then a CAE should learn tangent
vectors corresponding to moving or changing parts of objects
(e.g. head and legs) [59].

C. Generative Autoencoders

As mentioned previously, the autoencoders can be used
to learn manifolds in a nonparametric fashion. It is possible
to associate each of the neurons/nodes of a representation
with a tangent plane that spans the directions of variations
associated with the difference vectors between the example
and its neighbours [60]. An embedding associates each
training example with a real-valued vector position [20]. If
we have enough examples to cover the curvature and warps
of the target manifold, we could, for example, generate new
examples via some interpolation of such positions. In this
section we focus on generative AEs, but we also describe
Generative Adversarial Networks in this paper at Section V.

The idea of using an AE as a generative model is to
estimate the density Pdata, or P (x), that generates the data.
For example, in [61] the authors show that when training
DAEs including a procedure to corrupt the data x with noise
using a conditional distribution C(x̂|x), the DAE is trained
to estimate the reverse conditional P (x|x̂) as a side-effect.
Combining this estimator with the known corruption process,
they show that it is possible to obtain an estimator of P (x)
through a Markov chain that alternates between sampling
from the reconstruction distribution model P (x|x̂) (decode),
apply the stochastic corruption procedure C(x̂|x) (decode),
and iterate.

– Variational Autoencoders: in addition to the use of
CAEs and DAEs for generating examples, the Variational
Autoencoders (VAE) emerged as an important method of
unsupervised learning of complex distributions and used as
generative models [62].

VAEs were introduced as a constrained version of tradi-
tional autoencoders that learn an approximation of the true
distribution and are currently one of the most used generative
models available [63], [64]. Although VAEs share little
mathematical basis with CAEs and DAEs, its structure also
contains encoder and a decoder modules, thus resembling a
traditional autoencoder. In summary, it uses latent variables
z that can be seen as a space of rules that enforces a valid
example sampled from P (x). In practice, it tries to find a
function Q(z|x) (encoder) which can take a value x and
give as output a distribution over z values that are likely to
produce x.

To illustrate a training-time VAE implemented as a feed-
forward network we shown a simple example in Figure 14.
In our example P (x|z) is given by a Gaussian distribution,
and therefore we have a set of two parameters θ = {µ,Σ}.
Also, two loss functions are employed: (1) a Kullback-
Leibler (KL) divergence LKL between the distributions
formed by the estimated parameters N (µ(x),Σ(x)) and



N (0, I) in which I is the identity matrix – note that it
is possible to obtain maximum likelihood estimation from
minimizing the KL divergence; (2) a squared error loss
between the generated example f(x) and the input example
x.

Note that this VAE is basically trying to learn the pa-
rameters θ = {µ,Σ} of a Gaussian distribution and at the
same time a function f(), so that, when we sample from the
distribution it is possible to use the function f() to generate
a new sample. At test time, we just sample z, input it to the
decoder and obtain a generated example f(z) (see dashed
red line in Figure 14).

For the reader interested in this topic, we refer to [62] for
a detailed description of VAEs.

x

Encoder Q

µ(x) Σ(x)

LKL(N (µ(x),Σ(x)),N (0, I))

sample z ← N (µ(x),Σ(x))

Decoder P

f(z)

||x− f(z)||2

Figure 14. An example of training VAE as a feed-forward network in
which we have a Gaussian distributed P (x|z) as in [62]. Blue boxes
indicate loss functions. The dashed line highlights the test-time module
in which we sample z and generate f(z)

V. GENERATIVE ADVERSARIAL NETWORKS (GAN)

Deep Adversarial Networks have been recently introduced
by Goodfellow et al. [65] as a framework for building
Generative Models that are capable of learning, through
back-propagation, an implicit probability density function
from a set of data samples. One highlight of GANs is
that they perform learning and sampling without relying on
Markov chains and with scalable performance.

A. Generative Models

Given a training set made of samples drawn from a
distribution Pdata, a generative model learns to produce a
probability distribution Pmodel or sample from one such
distribution that represents an estimation of its Pdata coun-
terpart.

One way a generative model can work is by using the
principle of maximum likelihood (ML). In this context it is

assumed that the estimated probability distribution Pmodel
is parameterized by a set of parameters θ and that, for
any given θ, the likelihood L is the joint probability of all
samples from the training data x “happening” on the Pmodel
distribution:

L(x, θ) =

m∏
i=1

pmodel(xi; θ)

Training a model to achieve maximum likelihood is then
one way of estimating the distribution Pdata that generated
the training samples x. This has similarities with training
a VAE via minimization of a Kullback-Leibler divergence
(which is a way to achieve ML), as shown in Section IV-C.
GANs by default are not based on the ML principle but can,
for the sake of comparison, be altered to do so.

Generative models based on this principle can be divided
into two main groups: (a) models that learn an explicit
density function and (b) models that can draw samples from
an implicit but not directly specified density function. GANs
fall into the second group.

There is, however, a plethora of methods from the first
group that are currently used in the literature and, in many
cases, have incorporated deep learning into their respective
frameworks. Fully Visible Belief Networks were introduced
by Frey et al. [66], [67] and have recently featured as the
basis of a WaveNet [68], a state of the art generative model
for raw audio. Boltzmann Machines [69] and their counter-
parts Restricted Boltzmann Machines (RBM) are a family
of generative models that rely on Markov Chains for Pdata
approximation and were a key component at demonstrating
the potential of deep learning for modern applications [14],
[70]. Finally, autoencoders can also be used for generative
purposes, in particular denoise, contractive and variational
autoencoders as we described previously in Section IV-C.

GANs are currently applied not only for generation of
images but also in other contexts, for example image-to-
image translation and visual style transfer [71] [72].

B. Generator/Discriminator

In the GAN framework, two models are trained simul-
taneously; one is a generator model that given an input z
produces a sample x from an implicit probability distribution
Pg; the other is the discriminator model, a classifier that,
given an input x, produces single scalar (a label) that
determines whether x was produced from Pdata or from Pg .

It is possible to think of the generator as a money counter-
feiter, trained to fool the discriminator which can be thought
as the police force. The police are then always improving
its counterfeiting detection techniques at the same time as
counterfeiters are improving their ability of producing better
counterfeits.

Formally, GANs are a structured probabilistic model with
latent variables z and observed variables x. The two models



are represented generally by functions with the only require-
ment being that both must be differentiable. The generator
is a function G that takes z as an input and uses a list of
parameters θ(G) to output so called observed variables x.
The discriminator is, similarly, a function D that takes x
as an input and uses a list of parameters θ(D) to output a
single scalar value, the label. The function D is optimized
(trained) to assign the correct labels to both training data and
data produced by G while G itself is trained to minimize
correct assignments of D when regarding data produced by
G. There have been many developments in the literature
regarding the choice of cost functions for training both G
and D. The general framework can be seen as a diagram at
Figure 15.

training
set

x

x̂

Discriminator
Real or Generated?

Cost functionGenerator

z

Backpropagation

Figure 15. Generative Adversarial Networks Framework.

Given that the only requirement for functions G and D is
that both must be differentiable, it is easy to see how MLPs
and CNNs fit the place of both.

C. GAN Training

Training GANs is a relatively straightforward process. At
each minibatch, values are sampled from both the training
set and the set of random latent variables z and after one
step through the networks, one of the many gradient-based
optimization methods discussed in III-I is applied to update
G and D based on loss functions L(G) and L(D).

D. Loss Functions

The original proposal [65] is that D and G play a two-
player minimax game with the value function V (G,D):

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)]

+ Ez∼pg(z)[log(1−D(G(z)))]

Which in turn leads to the following loss functions:

L(D)(θ(D), θ(G)) =− 1

2
Ex∼pdata(x)[logD(x)]

− 1

2
Ez[log(1−D(G(x)))]

and

L(G)(θ(D), θ(G)) = −J (D)

This function and derived loss functions are interesting
for their theoretical background; Goodfellow et al. showed in
[65] that learning in this context is reducible to minimizing a
Jensen-Shannon divergence between the data and the model
distribution and that it converges if both G and D are convex
functions updated in function space. Unfortunately, since in
practice G and D are represented by Deep Neural Networks
(non-convex functions) and updates are made in parameter
space, the theoretical guarantee does not apply.

There is then at least one case where the minimax
based cost does not perform well and does not converge to
equilibrium. On a minimax game, if the discriminator ever
achieves a point where it is performing its task successfully,
the gradient of L(D) approaches zero, but, alarmingly, so
does the gradient of L(G), leading to a situation where the
generator stops updating. As suggested by Goodfellow et
al. [73], one approach to solving this problem is to use a
variation of the minimax game, a heuristic non-saturating
game. Instead of defining L(G) simply as the opposite of
L(D), we can change it to represent the discriminator’s
correct hits regarding samples generated by G:

L(G)(θ(D), θ(G)) = −1

2
Ez logD(G(x))

In this game, rather than minimizing log-probability of the
discriminator being correct like on the minimax game, the
generator maximises the log-probability of the discriminator
being mistaken, which is intuitively the same idea but
without the vanishing-gradient.

VI. SIAMESE AND TRIPLET NETWORKS

Whilst Deep Learning using CNN has achieved huge
successes in classification tasks, end-to-end regression with
DL is also an active field. Notable work in this area are
studies of Siamese and Triplet CNNs. The ultimate goal
of such networks is to project raw signals into a lower
dimensional space (aka. embedding) where their compact
representations are regressed so that the similar signals are
brought together and the dissimilar ones are pushed away.
These networks often consist of multiple CNN branches
depending on the number of training samples required in the
cost function. The CNN branches can have their parameters
either shared or not depending on whether the task is intra-
or cross-domain learning.

A. Siamese Networks with Contrastive Loss

A typical Siamese network has two identical CNN
branches with associated embedding function f(.). The



(a) (b)

Figure 16. (a) Siamese and (b) triplet networks.

standard cost function for a training exemplar (x1, x2) is
proposed by Hadsell et al. [74]:

L(W, (Y, x1, x2)) =
1

2
(1− Y )(D(W,x1, x2))2+

1

2
Y max{0,m−D(W,x1, x2)}2

(4)

where D(W,x1, x2) = ||f(W,x1)− f(W,x2)||2. Y = 1 if
(x1, x2) is a similar pair, and Y = 1 otherwise. m is a
margin defining a desirable threshold for distance between
x1 and x2 if they are dissimilar.

Variants of Equation 4 are studied in [75], [76]. Intra-
domain regression with shared CNN branches are employed
for embedding digits [74], face verification [76], photo
retrieval [77] and sketch2edgemap matching [75]. Cross-
domain learning between sketch and 3D model was studied
in [78] where each CNN branch has its own weights and
being updated independently during training.

B. Triplet Networks with Triplet Loss

A triplet network has three branches that accept a similar
pair (anchor, positive) and additionally a dissimilar sample
serving as the negative example. Unlike the contrastive
loss function that enforces a hard regularisation on the
similar pair (minimise distance toward zero), the triplet loss
regulates a more flexible approach that only consider relative
difference between the distances of similar and dissimilar
pairs:

L(W, (xa, xp, xn)) = (5)
1

2
max{0,m+ ||f(Wa, xa)− g(Wp, xp)||22 (6)

− ||f(Wa, xa)− g(Wp, xn)||22} (7)

where (xa, xp, xn) is an input triplet, m is the margin
and Wa and Wp are the parameters of the anchor f(.) and
positive/negative g(.) branches respectively. The positive and
negative branches are always identical. The anchor branch
is typically shared for learning embedding within a domain

(a) space before training

(b) desired space after training

Figure 17. Example of applying a triplet network to a multimodal retrieval
problem, the goal in this example is to approximate sketches and natural
images of the same category while keeping different categories apart; (a)
represents the space as it could be before training and (b) represents
the space as it should be after successful training. Triplet loss based
learning minimizes the distance between the anchor and positive samples
and maximises the distance between the anchor and negative samples.

such as face recognition [79] and tracking [80]. For learning
between completely different domains such as sketch vs.
photo in sketch-based image retrieval, the anchor branch
(fetching sketch) is kept unshared with the image branches
[81]. For mapping among similar domains like sketch and
image’s edgemap, the work in [54] shows that a hybrid half-
shared model performs the best. An intuitive visualization of
triplet network learning for mapping between sketches and
image’s edge maps can be seen on Figure 17.

Due to loose regularisation, it is often harder to train a
triplet network than a Siamese one. Several variants of Eq. 7
are proposed in [54], [80] to help training triplet networks
converged. Furthermore, it is still inconclusive whether or



not triplet CNN is better than Siamese. Contrastive loss is
seen to outperform triplet loss in [77], but marginally under-
performs its counterpart in [54], [82]. Recently, there exist
studies of another loss function that aims to overcome the
drawbacks of both contrastive and triplet losses, as claimed
in the work of [83].

VII. APPLICATIONS

Here we describe Computer Vision and Image Process-
ing applications that use the methods detailed in previous
sections, by reviewing some of the recent literature on each
topic.

A. Visual Stylization

Deep CNNs have also benefited visual content styliza-
tion [84]. Echoing the transformation of visual recognition
pipelines from hand-engineered to end-to-end trained so-
lutions, deep learning has delivered a step change in our
capability to learn artistic styles by example, and to transfer
that style to novel imagery - solving a major sub-problem
within the Non-Photorealistic Rendering (NPR) field of
computer graphics [85].

Stylized output had already been explored in projects
such as Google’s DeepDream [86], where backpropagation
was applied to optimize an input image toward an image
maximising a one-hot output on a discriminative network
(such as GoogLeNet). Initialising such a network with white
noise converges the input toward an optimal trigger image
for the desired object category. More interestingly, initial-
ising the optimization from a photograph (plus Gaussian
additive i.e. white noise) will hallucinate a locally optimal
image in which structures resembling the one-hot object are
transformed to more closely represent that object.

Gatys et al. [87] went further, observing that such noisy
images could optimized to meet a dual objective – seeking
a particular content (scene structure and composition) with
a particular style (the appearance properties). Specifically,
their ‘Neural Styles’ technique [87] accepted a pair of
images (a photograph and an artwork) as input, and sought
to hallucinate an input image that matched the content of
the input photograph, but matched the style of the input
artwork. A simplified structure of the techinque is presented
on Figure 18. The input image was again initialised from the
photograph plus white noise, and in their work a pre-trained
discriminative network (VGG19, trained over ImageNet)
was used for the optimization. During optimization network
weights are fixed, but the image is converged to minimise
loss LNS:

LNS(x; p, a) = αLcontent(p, x) + βLstyle(a, x)

where x refers the image being optimized, p refers to
the photograph and a refers to the example style image.
Weights α = 1, β = 100 are typically chosen to balance
the two losses, which otherwise exhibit differing orders of

magnitude. The content loss compares features extracted
from a late (semantic) layer of the VGG19 network —
ideally these should match between p and x. The original
formulation uses the conv4 2 layer of VGG19 (assume F (.)
extracts this image feature):

Lcontent =
1

2

∑
i,j

|F (p)− F (x)|2

The style loss is computed using several Gram (inner-
product) matrices, each computed from the feature response
from a layer in VGG19. For a given layer l the gram matrix
Gl can be computed as an inner product of the vectorised
feature map i and j within that layer (F li,j):

Gli,j(x) =
∑
k

F li,k(x)F lj,k(x).

The style loss simply sums
(
Gl(x)−Gl(a)

)2
for several

layers l. In some implementations the sum is weighted to
afford prominence to certain layers, but this has little prac-
tical outcome. The style loss is commonly aggregated over
a set of VGG19 layers {conv1 1, conv2 1, . . . , conv5 1}.

The use of the Gram matrix to encode style similarity was
the core insight in this work, and fundamentally underpins
all subsequent work on deep learning for stylization. For
example, recent work seeking to stylize video notes that
instability in the Gram matrix over time is directly correlated
with temporal incoherence (flicker) and seeks to minimize
that explicitly in the optimization [88].

Whilst optimization of the input image in this manner
yields impressive aesthetics, the technique is slow. More
recently, feed-forward networks have been used to stylize
images in the order of seconds rather than minutes [89].
Although current feed-forward designs somewhat degrade
style fidelity, their interactive speed has enabled video styl-
ization and a slew of commercial (mobile app) software (e.g.
Prisma, deepart.io) in the social media space. A discussion
of feed-forward architectures for visual stylization is beyond
the scope of this tutorial, but we note that contemporary
architectures for video stylization integrate two stream net-
works (again, pre-trained) – one branch dealing with image,
the other optical flow, with the latter integrated into the loss
function to minimise flicker [88], [90].

B. Image processing (pixels-to-pixels predictions)

Deep Networks for computer vision as seen so far are usu-
ally designed for image classification and feature learning.
In order to adapt such models to output images (instead of
class labels or feature vectors), one must train the networks
pixels-to-pixels. This kind of architecture is often called
Fully convolutional or Image Processing Deep Networks,
from which is possible to obtain for example semantic
segmentation [91]–[93], depth estimation [94], [95] and
optical flow [96].



Desired Image VGG19 Net Neural Styles Loss

Style Image VGG19 Net Style Representation

Content Image VGG19 Net Content Representation

Backpropagation

Figure 18. Simplified structure of Gatys et al. ‘Neural Styles’ technique

Fully Convolutional Netwoks (FCNs) are defined as
networks that operate on some input of any size and produce
an output of corresponding (and possibly resampled) spatial
dimensions. FCNs were proposed by [91] for semantic
segmentation. They show that classification networks can
be converted into FCNs that output coarse maps, but in
order to provide pixel-wise prediction, those coarse maps
must then be connected back to each input pixel. This is
performed in [91] via a bilinear interpolation that computes
each output from the nearest four inputs by a linear map
that depends only on the relative positions of the input and
output cells:

yi,j =

1∑
α,β=0

|1− α− {i/f}||1− β − {i/j}|xbi/fc+α,bj/fc+β ,

in which f is an upscaling factor, {.} returns the fractional
part.

Note that upsampling with a factor f can be seen as
a convolution with fractional input stride of 1/f . This
operation can be used as a upsampling layer (also known
as deconvolution layer), and allow end-to-end learning by
backpropagation of a pixelwise loss. A stack of deconvo-
lution layers with activation functions can even learn some
form of nonlinear upsampling.

An example of FCN is shown in Figure 19, in which the
VGGNet-16 is adapted (see Figure 5 for the original model),
by replacing FC layers with conv layers and adding decon-
volutional (upsampling) layers. To perform upsampling the
authors investigated three options: the first, FCN-32s, is a
single-stream network that uses just the output of the final
layer; the two others explore combinations of outputs from
different layers: the FCN-16s combines 2× the output of
Conv.15 and 1× the output of MaxPool4, and the FCN-8s
combines 4× the output of Conv.15 and 2× the output from
MaxPool4 and 1× the output from MaxPool3. The FCN-8s
networks obtained the best results for the PASCAL VOC
2011 segmentation dataset.

Another example of image processing network is a
CNN-based method that aims to learn Optical Flow

(FlowNet) [96] that works in a similar way. However,
because optical flow needs to be computed over a pair of im-
ages (e.g. consecutive frames of a video), two architectures
are proposed: the first stacks the pair of images, building
an initial input with depth 6 (2× RGB images) and then
using an FCN; the second starts with two parallel streams
of convolutions (3 conv.layers), one for each image, and has
a fusion layer after the 3rd conv.layer based on a correlation
operator.

Depth estimation from stereo image pairs without super-
vision is proposed by Garg et al. [94] using a Convolutional
AE. To reconstruct the source image, an inverse warp of
the target image is generated using the predicted depth
and known inter-view displacement. On the other hand, the
problem of estimating depth using a single image still needs
supervised learning to achieve good results. In [95], the
authors first apply a superpixel algorithm, extracting patches
of size 224 × 224 from the image using the superpixels as
centroids. They input individual patches to a CNN com-
posed of 5 conv.layers and 4 FC layers (which they call
unary part) and also compute similarities between superpixel
neighbours to be feed to one parallel FC layer (they call
it pairwise part). Finally, they use a Conditional Random
Fields (CRF) loss layer that allows to jointly learn unary
and pairwise potentials of a continuous CRF. The pairwise
is responsible for enforcing smoothness by minimizing the
distance between adjacent superpixels. Because each input
of the unary part is a superpixel, it is possible to predict
depth for each superpixel patch. They also explored FCNs
pretrained on ImageNet with posterior fine-tuning in order
to speed-up training time.

C. Video processing and analysis

Video data includes both a spatial domain and a time
domain. CNNs architectures as presented in the previous
sections are not able to model motion (the temporal di-
mension of a video). This is because they usually are
designed to receive as input an image taken at a given
time. In principle it is possible to process a video frame-
by-frame, i.e. performing spatial processing only, such as
in YOLO method, which achieved static object detection
in 155fps [97]. However, the temporal aspect of a video
carries crucial information for applications such as activity
recognition [98], classification [99], anomaly detection [8],
[100], among others. In order to use Deep Learning, we
need to input information related to more than one frame
so that the spatial-temporal features are learned. Here we
describe two possible approaches to address this problem:
first with the use of more than one network stream. Note that
this is similar to the ideas of Siamese and Triplet networks
(see Section VI) and in pixels-to-pixels predictions (Sec-
tion VII-B). A second approach explores 3D convolutions,
as we describe next.



In
pu

t
im

ag
e

...

M
ax

po
ol

in
g

3

C
on

v8

C
on

v9

C
on

v1
0

M
ax

po
ol

in
g

4

C
on

v1
1

C
on

v1
2

C
on

v1
3

M
ax

po
ol

in
g

5

C
on

v1
4

C
on

v1
5

FC
N

-3
2s

:
3
2
×

up
sa

m
pl

in
g

FC
N

-1
6s

:
1
6
×

up
sa

m
pl

in
g

FC
N

-8
s:

8×
up

sa
m

pl
in

g

Figure 19. A FCN based on the VGGNet-16 architecture (the layers
between input and Max Pooling 3 are omitted). The FC layers 14 and
15 are replaced by convolutional layers. There are 3 versions of de-
convolutional/upsampling layers: (FCN-32s) upsample of 32× using the
output of Conv15; (FCN-16s) upsample of 16× combining the outputs of
Conv15 layer and MaxPool4 layer at stride 16; (FCN-8s) upsample of 8×
combining the Conv15 and MaxPool4 layers with an additional MaxPool3
output at stride 8.

– Multi-stream networks: deep networks for video use
several streams of layers often using images and optical-
flow to process video data. The Two-stream Network was
proposed by [98] and also used in [99]. In this framework,
two CNN streams are employed; the first CNN (spatial
stream) takes as input frames ft; the second CNN (temporal
stream) takes as input the Optical Flow computed from pairs
of L frames. Since each Optical Flow results in a vertical
and a horizontal component, the input of the temporal stream
CNN is composed of 2L input channels. In [98] they report
L = 10 as giving the best results. Each stream has its own
softmax classifier and respective loss function. A fusion
of the two class scores is performed (using the sum) to
obtain the overall training loss, from which an additional
loss function layer is used to compute the backpropagation.
In [99], the authors use the Two-Stream network with an
LSTM on the top in order to store information over time
and explore long-range dynamics.

In the context of anomaly detection, in which we only
have examples from the normal class, a three-stream au-
toencoder was proposed using frames and optical-flow maps
to extract appearance, motion and joint representations [8].
Those representations are then used to train a One Class
SVM classifier that is used to detect anomalies in video
data.

– Convolutional 3D: is a convolutional network that
considers sequences of frames as input in order to be used
for videos. To do so, in [101] the authors propose to use
3D convolutions and 3D pooling layers to create networks
that can jointly model the spatial and temporal dimensions

of a video. To prove the effectiveness of such approach they
developed an architecture, named Convolutional 3D (C3D)
network.

Similarly to the VGG networks, C3D uses small convo-
lutional kernels (3×3×3) to reduce the number of weights
to be learned, and 3D pooling layers with sizes 1 × 2 × 2
(Pooling 1), and 2×2×2 (Pooling 2–5). The network takes
as input 224× 224× 16 pixels (16 sequential frames, each
one with a 224×224 resolution). Note that applying a small
3D convolution in a video volume results in another volume
as feature map, which preserves the temporal information to
be processed by further layers.

From an architectural point of view, C3D has 8 3D-
convolutional, 2 FC, 5 max pooling and one softmax layers.
Lastly, it applies a 0.5 dropout on FC6 and FC7. As the
authors show, the CD3 learns representations that capture
the appearance of the first frames, and thereafter shows
activation patterns referring to salient motion. Although the
CD3 is able to take as input only fragments of videos
containing 16 frames, the method obtained stated-of-the-art
results for action recognition in some challenging datasets
(e.g. Sports-1M [102] and UCF101 [103])

VIII. LIMITATIONS OF DEEP LEARNING

Deep learning models for computer vision achieved statis-
tically impressive results. As we show throughout this paper,
the idea of stacking layers of operators that are trained to
learn hierarchical representations is useful to many applica-
tions and contexts. By using different simple architectures
such as CNNs, AEs or GANs, and their combination into
more complex architectures such as Siamese, Triplet, Multi-
stream, etc., it is possible to implement strategies to solve a
vast number of applications.

There are, however, clear limitations with this kind of
approach. Recall that neural networks (including deep net-
works) are basically a way to learn a series of transforma-
tions applied to an input vector so that it minimizes the loss
function. In the case of classification, for example, the net-
work learns how to transform input examples from different
classes so that they are mapped to different regions of the
output space, one example at a time. This transformation
is given by a large set of weights (parameters) that are
updated during training stage so that the loss function is
minimized. In order to allow training, the transformation
must be differentiable, i.e. the map between input and output
must be continuous and ideally smooth, which presents a
significant constraint [21].

Whilst deep networks need very large annotated datasets,
human beings are able to learn a concept by abstraction
seeing just a few examples. To train a network to classify
numeric digits, we need hundreds or thousands of such digits
drawn by different people, while humans usually are able to
learn the same concepts with a few examples drawn by one
person only. We also easily adapt those concepts over time.



Figure 20. Adversarial examples visually unrecognizable, but classified
with more than 99% confidence by Deep Learning methods, as in [104].

Figure 21. Adversarial image generated by adding a cheetah gradient
feature to a picture of an owl, that is then classified with high confidence
as a cheetah by a state-of-the-art Deep Network.

Although generative models are a step towards this direction,
since they represent an attempt to model the distribution that
generates the data categories, those are still a long way from
the human learning capacity.

Even considering tasks that are in principle possible to
be addressed via Deep Learning, there are many studies
showing that perturbations in the input data, such as noise,
can significantly impact the results [44]. An interesting paper
showed that deep networks can even fail to classify inverted
images [105]. It is possible to create images that appear to
be just random noise and are unrecognizable to humans,
but that CNNs believe to belong to some known class with
more than 99% of certainty [104] as examples shown in
Figure 20. Based on those unrecognizable patterns, it is
possible to design small perturbations (around 4%) added
to images so that the output of such methods is completely
wrong [106]. In Figure 21 we adapt a famous example by
adding a cheetah gradient feature to an owl image so that
it is imperceptible to humans, but that is then classified
with high confidence as cheetah by a Deep Network. In
order to alleviate such fragility to attacks, recent studies
recommend to add adversarial examples to the training
set or to increase the capacity (in terms of number of
filters/nodes per layer), increasing the number of parameters
and therefore the complexity of space of functions allowed in
the model [107], [108]. Therefore, although the performance
of such methods can be impressive when considering overall
results, the outputs can be individually unreliable.

If we analyze those already mentioned scenarios in the
point of view of Statistical Learning Theory [109], we
could hypothesize that those methods are in fact learning
the memory-based model. They work well in several cases

because they are trained with up to millions of examples,
thus unseen data that is similar to training data will even-
tually fall inside the memorized regions. Although recent
work including tensor analysis of representations [110] and
uncertainty [111] tried to shed light on learning behaviour
of deep networks, more studies on theoretical aspects related
to Deep Learning are still needed.

Nevertheless, the positive impact of Deep Learning in
Computer Vision and Image Processing is undeniable. By
understanding its limitations and inner workings, researchers
can explore those methods for many years to come and
continue to develop exciting results for new applications.

ACKNOWLEDGMENT

The authors would like to thank FAPESP (grants #2016-
16411-4, #2017/10068-2, #2015/04883-0, #2013/07375-0)
and the Santander Mobility Award.

REFERENCES

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” in
CVPR09, 2009.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[3] K. Fukushima, “Neocognitron: A hierarchical neural net-
work capable of visual pattern recognition,” Neural net-
works, vol. 1, no. 2, pp. 119–130, 1988.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceed-
ings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[5] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories,” in Computer Vision and Pattern Recogni-
tion, 2006 IEEE Conf. on, vol. 2. IEEE, 2006, pp. 2169–
2178.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing
Systems., 2012, pp. 1106–1114.

[7] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote
sensing data: A technical tutorial on the state of the art,”
IEEE Geoscience and Remote Sensing Magazine, vol. 4,
no. 2, pp. 22–40, 2016.

[8] D. Xu, E. Ricci, Y. Yan, J. Song, and N. Sebe, “Learning
deep representations of appearance and motion for anoma-
lous event detection.” in British Matchine Vision Conference
(BMVC), X. Xie, M. W. Jones, and G. K. L. Tam, Eds.
BMVA Press, 2015.



[9] M. Ravanbakhsh, M. Nabi, H. Mousavi, E. Sangineto,
and N. Sebe, “Plug-and-play CNN for crowd motion
analysis: An application in abnormal event detection,”
CoRR, vol. abs/1610.00307, 2016. [Online]. Available:
http://arxiv.org/abs/1610.00307

[10] I. B. Barbosa, M. Cristani, B. Caputo, A. Rognhaugen, and
T. Theoharis, “Looking beyond appearances: Synthetic train-
ing data for deep cnns in re-identification,” arXiv preprint
arXiv:1701.03153, 2017.

[11] A. Fischer and C. Igel, “Training restricted boltzmann ma-
chines: An introduction,” Pattern Recognition, vol. 47, no. 1,
pp. 25–39, 2014.

[12] H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio,
“Learning algorithms for the classification restricted boltz-
mann machine,” Journal of Machine Learning Research,
vol. 13, no. Mar, pp. 643–669, 2012.

[13] R. Salakhutdinov and G. Hinton, “Deep boltzmann ma-
chines,” in Artificial Intelligence and Statistics, 2009, pp.
448–455.

[14] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,” Neural computation, vol. 18,
no. 7, pp. 1527–1554, 2006.

[15] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,
Z. Su, D. Du, C. Huang, and P. Torr, “Conditional random
fields as recurrent neural networks,” in International Con-
ference on Computer Vision (ICCV), 2015.

[16] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recog-
nition with deep recurrent neural networks,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2013, pp. 6645–6649.

[17] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty
of training recurrent neural networks,” in International Con-
ference on Machine Learning, 2013, pp. 1310–1318.

[18] R. Gonzalez and R. Woods, Digital Image Processing,
3rd ed. Pearson, 2007.

[19] S. Ben-David and S. Shalev-Shwartz, Understanding Ma-
chine Learning: from theory to algorithms. Cambridge,
2014.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
MIT Press, 2016, http://www.deeplearningbook.org.

[21] F. Chollet, Deep Learning with Python. Manning, 2017.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR, vol.
abs/1409.1556, 2014.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” CoRR, vol. abs/1512.03385, 2015.

[24] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
CoRR, vol. abs/1512.00567, 2015.

[25] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[26] V. Nair and G. E. Hinton, “Rectified linear units improve
restricted boltzmann machines,” in Proceedings of the 27th
International Conference on Machine Learning (ICML-10),
J. Fürnkranz and T. Joachims, Eds. Omnipress, 2010, pp.
807–814.

[27] K. He, X. Zhang, S. Ren, and J. Sun, Identity Mappings
in Deep Residual Networks. Cham: Springer International
Publishing, 2016, pp. 630–645. [Online]. Available: https:
//doi.org/10.1007/978-3-319-46493-0 38

[28] M. Ponti, E. S. Helou, P. J. S. Ferreira, and N. D. Mas-
carenhas, “Image restoration using gradient iteration and
constraints for band extrapolation,” IEEE Journal of Selected
Topics in Signal Processing, vol. 10, no. 1, pp. 71–80, 2016.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1026–1034.

[30] J. T. Springenberg, A. Dosovitskiy, T. Brox, and
M. Riedmiller, “Striving for simplicity: The all
convolutional net,” in ICLR (workshop track), 2015.
[Online]. Available: http://lmb.informatik.uni-freiburg.de/
Publications/2015/DB15a

[31] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller,
“Efficient backprop,” in Neural networks: Tricks of the trade.
Springer, 2012, pp. 9–48.

[32] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
in International Conference on Machine Learning, 2015, pp.
448–456.

[33] M. Ponti, J. Kittler, M. Riva, T. de Campos, and C. Zor, “A
decision cognizant Kullback–Leibler divergence,” Pattern
Recognition, vol. 61, pp. 470–478, 2017.

[34] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,”
Journal of Machine Learning Research, vol. 12, no. Jul, pp.
2121–2159, 2011.

[35] M. D. Zeiler, “Adadelta: an adaptive learning rate method,”
arXiv preprint arXiv:1212.5701, 2012.

[36] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning
Representations (ICLR), 2015.

[37] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-
batch training for stochastic optimization,” in Proceedings
of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2014, pp.
661–670.

[38] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization
methods for large-scale machine learning,” arXiv preprint
arXiv:1606.04838, 2016.



[39] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,
and K. He, “Accurate, large minibatch SGD:
Training imagenet in 1 hour.” [Online]. Available:
https://research.fb.com/publications/imagenet1kin1h/

[40] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
and R. R. Salakhutdinov, “Improving neural networks by
preventing co-adaptation of feature detectors,” arXiv preprint
arXiv:1207.0580, 2012.

[41] D. Warde-Farley, I. J. Goodfellow, A. Courville, and
Y. Bengio, “An empirical analysis of dropout in piecewise
linear networks,” in ICLR 2014, 2014. [Online]. Available:
arXivpreprintarXiv:1312.6197

[42] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2818–2826.

[43] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman,
“Return of the devil in the details: Delving deep into
convolutional nets,” in British Machine Vision Conference
(BMVC), 2014, p. 1405.3531.

[44] T. Nazare, G. Paranhos da Costa, W. Contato, and M. Ponti,
“Deep convolutional neural networks and noisy images,” in
Iberoamerican Conference on Pattern Recognition (CIARP),
2017.

[45] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi,
“Inception-v4, inception-resnet and the impact of residual
connections on learning.” in AAAI, 2017, pp. 4278–4284.

[46] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and¡ 0.5 mb model size,” in
ICLR, 2016.

[47] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues,
J. Yao, D. Mollura, and R. M. Summers, “Deep convolu-
tional neural networks for computer-aided detection: Cnn
architectures, dataset characteristics and transfer learning,”
IEEE transactions on medical imaging, vol. 35, no. 5, pp.
1285–1298, 2016.

[48] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson,
“Cnn features off-the-shelf: An astounding baseline for
recognition,” in Proceedings of the 2014 IEEE Conference
on Computer Vision and Pattern Recognition Workshops,
ser. CVPRW ’14. Washington, DC, USA: IEEE Computer
Society, 2014, pp. 512–519.

[49] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning
and transferring mid-level image representations using con-
volutional neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
2014, pp. 1717–1724.

[50] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie,
“High-dimensional and large-scale anomaly detection using
a linear one-class svm with deep learning,” Pattern Recog-
nition, vol. 58, pp. 121–134, 2016.

[51] M. Ponti, T. S. Nazaré, and G. S. Thumé, “Image quanti-
zation as a dimensionality reduction procedure in color and
texture feature extraction,” Neurocomputing, vol. 173, pp.
385–396, 2016.

[52] Y. Kalantidis and Y. Avrithis, “Locally optimized product
quantization for approximate nearest neighbor search,” in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2014, pp. 2321–2328.

[53] T. Bui, L. Ribeiro, M. Ponti, and J. Collomosse, “Compact
descriptors for sketch-based image retrieval using a triplet
loss convolutional neural network,” Computer Vision and
Image Understanding, 2017.

[54] ——, “Generalisation and sharing in triplet convnets
for sketch based visual search,” arXiv preprint
arXiv:1611.05301, 2016.

[55] Y. Bengio, A. Courville, and P. Vincent, “Representation
learning: A review and new perspectives,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828,
Aug. 2013.

[56] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber,
“Stacked convolutional auto-encoders for hierarchical fea-
ture extraction,” Artificial Neural Networks and Machine
Learning–ICANN 2011, pp. 52–59, 2011.

[57] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.
Manzagol, “Stacked denoising autoencoders: Learning use-
ful representations in a deep network with a local denoising
criterion,” Journal of Machine Learning Research, vol. 11,
no. Dec, pp. 3371–3408, 2010.

[58] G. Alain and Y. Bengio, “What regularized auto-encoders
learn from the data-generating distribution,” The Journal of
Machine Learning Research, vol. 15, no. 1, pp. 3563–3593,
2014.

[59] S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Bengio,
Y. Dauphin, and X. Glorot, “Higher order contractive auto-
encoder,” Machine Learning and Knowledge Discovery in
Databases, pp. 645–660, 2011.

[60] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear
component analysis as a kernel eigenvalue problem,” Neural
computation, vol. 10, no. 5, pp. 1299–1319, 1998.

[61] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized
denoising auto-encoders as generative models,” in Advances
in Neural Information Processing Systems, 2013, pp. 899–
907.

[62] C. Doersch, “Tutorial on variational autoencoders,” arXiv
preprint arXiv:1606.05908, 2016.

[63] D. J. Rezende, S. Mohamed, and D. Wierstra,
“Stochastic backpropagation and approximate inference
in deep generative models,” in Proceedings of the
31st International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, E. P. Xing and
T. Jebara, Eds., vol. 32, no. 2. Bejing, China: PMLR,
22–24 Jun 2014, pp. 1278–1286. [Online]. Available:
http://proceedings.mlr.press/v32/rezende14.html



[64] D. P. Kingma, “Fast Gradient-Based Inference with
Continuous Latent Variable Models in Auxiliary Form,” jun
2013. [Online]. Available: http://arxiv.org/abs/1306.0733

[65] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” in Advances in Neural Infor-
mation Processing Systems 27, 2014.

[66] B. J. Frey, G. E. Hinton, and P. Dayan, “Does the wake-sleep
algorithm produce good density estimators?” in Advances in
Neural Information Processing Systems 8, D. S. Touretzky,
M. C. Mozer, and M. E. Hasselmo, Eds. MIT Press, 1996,
pp. 661–667.

[67] B. J. Frey, Graphical models for machine learning
and digital communication. MIT Press, 1998.
[Online]. Available: https://mitpress.mit.edu/books/
graphical-models-machine-learning-and-digital-communication

[68] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior,
and K. Kavukcuoglu, “WaveNet: A Generative Model
for Raw Audio,” sep 2016. [Online]. Available: http:
//arxiv.org/abs/1609.03499

[69] S. E. Fahlman, G. E. Hinton, and T. J. Sejnowski,
“Massively parallel architectures for ai: Netl, thistle,
and boltzmann machines,” in Proceedings of the Third
AAAI Conference on Artificial Intelligence, ser. AAAI’83.
AAAI Press, 1983, pp. 109–113. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2886844.2886868

[70] G. E. Hinton, “Learning multiple layers of representation,”
pp. 428–434, 2007. [Online]. Available: http://www.cs.
toronto.edu/{∼}fritz/absps/tics.pdf

[71] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks,” in ICLR 2017, 2017, p. arXiv preprint
arXiv:1703.10593.

[72] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-
image translation with conditional adversarial networks,” in
CVPR 2017, 2017, p. arXiv preprint arXiv:1611.07004.

[73] I. Goodfellow, “NIPS 2016 Tutorial: Generative Adversarial
Networks,” dec 2016. [Online]. Available: http://arxiv.org/
abs/1701.00160

[74] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality
reduction by learning an invariant mapping,” in Computer
vision and pattern recognition, 2006 IEEE computer society
conference on, vol. 2. IEEE, 2006, pp. 1735–1742.

[75] Y. Qi, Y.-Z. Song, H. Zhang, and J. Liu, “Sketch-based
image retrieval via siamese convolutional neural network,”
in Image Processing (ICIP), 2016 IEEE International Con-
ference on. IEEE, 2016, pp. 2460–2464.

[76] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity
metric discriminatively, with application to face verifica-
tion,” in Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, vol. 1.
IEEE, 2005, pp. 539–546.

[77] F. Radenović, G. Tolias, and O. Chum, “Cnn image re-
trieval learns from bow: Unsupervised fine-tuning with hard
examples,” in European Conference on Computer Vision.
Springer, 2016, pp. 3–20.

[78] F. Wang, L. Kang, and Y. Li, “Sketch-based 3d shape re-
trieval using convolutional neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1875–1883.

[79] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A
unified embedding for face recognition and clustering,” in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 815–823.

[80] X. Wang and A. Gupta, “Unsupervised learning of visual
representations using videos,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp.
2794–2802.

[81] P. Sangkloy, N. Burnell, C. Ham, and J. Hays, “The sketchy
database: learning to retrieve badly drawn bunnies,” ACM
Transactions on Graphics (TOG), vol. 35, no. 4, p. 119,
2016.

[82] E. Hoffer and N. Ailon, “Deep metric learning using triplet
network,” in International Workshop on Similarity-Based
Pattern Recognition. Springer, 2015, pp. 84–92.

[83] O. Rippel, M. Paluri, P. Dollár, and L. D. Bourdev, “Metric
learning with adaptive density discrimination,” CoRR, vol.
abs/1511.05939, 2015.

[84] P. Rosin and J. C. (Eds.), Image and Video based Artistic
Stylization. Springer, 2013.

[85] J.-E. Kyprianidis, J. Collomosse, T. Wang, and T. Isenberg,
“State of the ’art’: A taxonomy of artistic stylization tech-
niques for images and video,” IEEE Trans. Visualization and
Comp. Graphics (TVCG), 2012.

[86] A. Mordvintsev, M. Tyka, and C. Olah, “Deepdream,” https:
//github.com/google/deepdream, 2015.

[87] L. Gatys, A. Ecker, and M. Bethge, “A neural algorithm of
artistic style,” arXiv preprint arXiv:1508.06576, 2015.

[88] D. Chen, J. Liao, L. Yuan, N. Yu, and G. Hua, “Coherent
online video style transfer,” in Proc. Intl. Conf. Computer
Vision (ICCV), 2017.

[89] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky,
“Texture networks: Feed-forward synthesis of textures and
stylized images,” in Proc. Intl. Conf. Machine Learning
(ICML), 2016.

[90] A. Gupta, J. Johnson, A. Alahi, and L. Fei-Fei, “Stability
in neural style transfer: Characterization and application,” in
Proc. Intl. Conf. Computer Vision (ICCV), 2017.

[91] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 4,
pp. 640–651, 2017.



[92] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A
deep convolutional encoder-decoder architecture for scene
segmentation,” IEEE transactions on pattern analysis and
machine intelligence, 2017.

[93] L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and
A. L. Yuille, “Semantic image segmentation with task-
specific edge detection using cnns and a discriminatively
trained domain transform,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2016, pp. 4545–4554.

[94] R. Garg, G. Carneiro, and I. Reid, “Unsupervised cnn for
single view depth estimation: Geometry to the rescue,” in
European Conference on Computer Vision. Springer, 2016,
pp. 740–756.

[95] F. Liu, C. Shen, G. Lin, and I. Reid, “Learning depth from
single monocular images using deep convolutional neural
fields,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 38, no. 10, pp. 2024–2039, 2016.

[96] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,
V. Golkov, P. van der Smagt, D. Cremers, and T. Brox,
“Flownet: Learning optical flow with convolutional net-
works,” in Proceedings of the IEEE International Confer-
ence on Computer Vision, 2015, pp. 2758–2766.

[97] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 779–788.

[98] K. Simonyan and A. Zisserman, “Two-stream convolutional
networks for action recognition in videos,” in Advances in
neural information processing systems, 2014, pp. 568–576.

[99] Z. Wu, X. Wang, Y.-G. Jiang, H. Ye, and X. Xue, “Modeling
spatial-temporal clues in a hybrid deep learning framework
for video classification,” in Proceedings of the 23rd ACM
international conference on Multimedia. ACM, 2015, pp.
461–470.

[100] M. Ponti, T. S. Nazare, and J. Kittler, “Optical-flow fea-
tures empirical mode decomposition for motion anomaly
detection,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2017, pp.
1403–1407.

[101] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3d convolutional
networks,” in Proceedings of the IEEE International Con-
ference on Computer Vision, 2015, pp. 4489–4497.

[102] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei, “Large-scale video classification with con-
volutional neural networks,” in CVPR, 2014.

[103] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset
of 101 human actions classes from videos in the wild,”
CoRR, vol. abs/1212.0402, 2012.

[104] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks
are easily fooled: High confidence predictions for unrecog-
nizable images,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 427–436.

[105] H. Hosseini and R. Poovendran, “Deep neural net-
works do not recognize negative images,” arXiv preprint
arXiv:1703.06857, 2017.

[106] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami, “The limitations of deep learning
in adversarial settings,” in IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 2016, pp. 372–
387.

[107] A. Rozsa, M. Günther, and T. E. Boult, “Are accuracy and
robustness correlated,” in Machine Learning and Applica-
tions (ICMLA), 2016 15th IEEE International Conference
on. IEEE, 2016, pp. 227–232.

[108] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu, “Towards deep learning models resistant to ad-
versarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

[109] V. Vapnik, The nature of statistical learning theory.
Springer science & business media, 2013.

[110] N. Cohen, O. Sharir, and A. Shashua, “On the expressive
power of deep learning: A tensor analysis,” in Conference
on Learning Theory, 2016, pp. 698–728.

[111] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learning,”
in International Conference on Machine Learning, 2016, pp.
1050–1059.


