Exercícios 3.2. Determine, por redução de ordem, a 2ª solução das equações abaixo:

- 1) $\ddot{y} 4\dot{y} 12y = 0$, $y_1(t) = e^{6t}$.
- 2) $\ddot{y} 2\dot{y} + y = 0$, $y_1(t) = e^t$.
- 3) $t^2 \ddot{y} + 2 t \dot{y} = 0$, $y_1(t) = 1$.
- 4) $2t^2\ddot{y} + 3t\dot{y} y = 0$, $y_1(t) = \sqrt{t}$.

EQUAÇÕES HOMOGÊNEAS COM COEFI-3.3 CIENTES CONSTANTES

Consideremos a equação

$$a\ddot{y} + b\dot{y} + cy = 0,$$
 (3.14)

em que a, b e c são constantes reais com $a \neq 0$.

Exemplo 3.3. 1) Movimento de um pêndulo simples $\ddot{\theta} + \frac{g}{\ell} \theta = 0$.

2) Sistema massa mola: $\ddot{y}+\frac{b}{m}~\dot{y}+\frac{k}{m}~y=0$, em que o termo $b\,\dot{y}$ é devido à resistência do meio. \Box

De acordo com o Teorema 3.5, basta encontrar duas soluções $y_1(t)$ e $y_2(t)$ linearmente independentes (isto é, $W[y_1, y_2](t) \neq 0$) de (3.14) e todas as demais serão combinações destas.

Observemos que se $y = \varphi(t)$ é uma solução de (3.14) então a soma dos termos $a\ddot{\varphi}(t)$, $b\dot{\varphi}(t)$ e $c\varphi(t)$ deve ser igual a zero para todo t. Para que isto ocorra as três funções $\varphi(t)$, $\dot{\varphi}(t)$ e $\ddot{\varphi}(t)$ devem ser do "mesmo tipo". Por exemplo a função $y(t) = t^4$ nunca poderá ser solução de (3.14) pois os termos $12 a t^2$, $4 b t^3$ e $c t^4$ são polinomios de graus diferentes e, por isso sua soma não se cancela. Por outro lado, a função $y(t) = e^{\lambda t}$, em que λ é constante, tem a propriedade de que tanto $\dot{y}(t)$ como $\ddot{y}(t)$ são múltiplos de y(t). Isto sugere que tentemos $y(t) = e^{\lambda t}$ como solução de (3.14). Substituindo $y(t) = e^{\lambda t}$ em (3.14) obtemos

$$a(e^{\lambda t})'' + b(e^{\lambda t})' + ce^{\lambda t} = 0 \implies e^{\lambda t}(a\lambda^2 + b\lambda + c) = 0$$

o que implica que

$$a\lambda^2 + b\lambda + c = 0. ag{3.15}$$

Portanto, $y(t) = e^{\lambda t}$ é uma solução de (3.14) se, e somente, se λ é raiz de (3.15). A equação (3.15) é chamada **Equação Característica** de (3.14). As raízes de (3.15) são

$$\lambda_1 = \frac{-b + \sqrt{b^2 - 4 a c}}{2 a}$$
 e $\lambda_2 = \frac{-b - \sqrt{b^2 - 4 a c}}{2 a}$.

Vamos analisar as três possibilidades para o discriminante $b^2-4\,a\,c$:

i) $b^2 - 4ac > 0$: Raízes reais distintas

Neste caso $e^{\lambda_1 t}$ e $e^{\lambda_2 t}$ são soluções de (3.14) e seu wronskiano

$$W(t) = \det \begin{pmatrix} e^{\lambda_1 t} & e^{\lambda_2 t} \\ \lambda_1 e^{\lambda_1 t} & \lambda_2 e^{\lambda_2 t} \end{pmatrix} = (\lambda_2 - \lambda_1) e^{(\lambda_1 + \lambda_2)t} \neq 0,$$

para todo $t \in \mathbb{R}$. Logo, as soluções são linearmente independentes e, portanto, formam uma base do espaço das soluções. Ou seja, qualquer solução de (3.14) é da forma

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}.$$

ii) $b^2 - 4ac = 0$: Raízes reais iguais

Neste caso $\lambda_1 = \lambda_2 = -\frac{b}{2a}$ e com isto temos uma solução $y_1 =$ $e^{(-b/2\,a)\,t}.$ Vamos encontrar a outra solução de (3.14) (não múltipla de y_1) usando redução de ordem, isto é, procurando v(t) não constante tal que $y_2(t) = v(t) e^{-(b/2a)t}$ seja solução de (3.14). Substituindo em (3.14), obtemos

$$e^{-(b/2 a)t} \left[a \ddot{v} + \left(\frac{b^2}{4 a} - \frac{b^2}{2 a} + c \right) v \right] = 0.$$

Como $e^{-(b/2a)t} \neq 0$ para todo $t \in b^2 - 4ac = 0$, temos

$$\ddot{v} = 0 \implies v(t) = \alpha t + \beta, \text{ com } \alpha, \beta \in \mathbb{R}.$$

Podemos tomar $\alpha = 1$ e $\beta = 0$, pois queremos encontrar **uma solução**. Logo, v(t) = t. Portanto, a outra solução de (3.14) é

$$y_2(t) = t e^{-(b/2 a) t}$$
.

Exemplo 3.4. Resolva o P.V.I.

$$\begin{cases} \ddot{y} + 6\dot{y} + 9y = 0\\ y(0) = 1, \ \dot{y}(0) = 2. \end{cases}$$

Solução: $y = e^{\lambda t} \Longrightarrow \lambda^2 + 6\lambda + 9 = 0 \Longrightarrow \lambda_1 = \lambda_2 = -3$. Portanto, a solução geral é

$$y(t) = (c_1 + c_2 t) e^{-3t}$$
.

Como y(0) = 1, temos $c_1 = 1$. Além disso, $\dot{y}(t) = (c_2 - 3 - 3c_2t)e^{-3t}$ e $\dot{y}(0) = 2$. Logo, $c_2 = 5$. Portanto, a solução do P.V.I. é

$$y(t) = e^{-3t} + 5t e^{-3t}$$
. \square

iii) $b^2 - 4ac < 0$: Raízes Complexas

Logo,

$$\lambda_1 = -\frac{b}{2a} + \frac{i\sqrt{4ac - b^2}}{2a}$$
 e $\lambda_2 = -\frac{b}{2a} - \frac{i\sqrt{4ac - b^2}}{2a}$.

Gostaríamos de dizer que $e^{\lambda_1 t}$ e $e^{\lambda_2 t}$ são soluções de (3.14). Entretanto surgem dois problemas:

- a) definir $e^{\lambda t}$ para λ complexo,
- b) mesmo que consigamos definir $e^{\lambda_1 t}$ e $e^{\lambda_2 t}$ como soluções (que certamente terão valores complexos) de (3.14) queremos obter soluções reais.

Comecemos resolvendo o segundo problema, pois caso contrário não teria sentido resolver o primeiro.

DEFINIÇÃO 3.1. Se
$$F(t) = u(t) + i v(t)$$
, definimos $\dot{F}(t) = \dot{u}(t) + i \dot{v}(t)$.

Observação 3.9. Esta definição faz sentido, pois podemos identificar F(t) = u(t) + i v(t) com f(t) = (u(t), v(t)). Logo, f(t) é uma parametrização de uma curva plana cujo vetor velocidade é $(\dot{u}(t), \dot{v}(t))$. Fica então natural a definição acima.

Proposição 3.1. Se y(t) = u(t) + iv(t) é uma solução a valores complexos de (3.14), então u(t) e v(t) são soluções reais de (3.14).

Demonstração. Note que

$$a\ddot{y}(t) + b\dot{y}(t) + cy(t) = 0$$

ou seja,

$$[a \ddot{u}(t) + b \dot{u}(t) + c u(t)] + i [a \ddot{v}(t) + b \dot{v}(t) + c v(t)] = 0.$$

Para que um número complexo seja zero é necessário que sua parte real e sua parte imaginária sejam zero. Logo,

$$a\ddot{u}(t) + b\dot{u}(t) + cu(t) = 0$$
 e $a\ddot{v}(t) + b\dot{v}(t) + cv(t) = 0$.

Isto é u e v são soluções (3.14).

E com isto resolvemos o segundo problema. Passemos agora ao primeiro, isto é, vamos definir $e^{\lambda t}$ para λ complexo. É natural pedir que esta função satisfaça $e^{a+b}=e^ae^b$. Logo, se $\lambda=\alpha+i\beta$, devemos

$$e^{\lambda t} = e^{\alpha t + i\beta t} = e^{\alpha t} e^{i\beta t}.$$

Portanto, basta apenas definirmos $e^{i\beta t}$.

Sabemos que, para todo x real, vale

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

A equação acima tem sentido, formalmente, mesmo para x complexo. Isto sugere que coloquemos

$$e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \dots =$$

$$= 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} - \dots$$

$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots\right),$$

Como $\cos \theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots$ e $\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots$ é razoável definir

$$e^{i\theta} = \cos\theta + i \sin\theta.$$

Portanto,

$$e^{\lambda t} = e^{(\alpha + i\beta)t} = e^{\alpha t}(\cos \beta t + i \sin \beta t).$$

Exercício: Mostre que $\frac{de^{\lambda t}}{dt} = \lambda e^{\lambda t}$ para λ complexo.

Agora é fácil verificar que

$$y(t) = e^{\lambda t} = e^{\alpha t} (\cos \beta t + i \sin \beta t), \quad \text{com} \quad \alpha = \frac{-b}{2 a} \quad \text{e} \quad \beta = \frac{\sqrt{4 a c - b^2}}{2 a}$$

é uma solução a valores complexos de (3.14), se $b^2 - 4ac < 0$. Logo, pela Proposição 3.1, temos que

$$y_1(t) = e^{\alpha t} \cos \beta t$$
 e $y_2(t) = e^{\alpha t} \sin \beta t$

são duas soluções reais de (3.14).

EXERCÍCIO: Mostre que $W[y_1, y_2](t) = \beta e^{2\alpha t}$

Pelo exercício acima, temos que $y_1(t) = e^{\alpha t} \cos \beta t$ e $y_2(t) = e^{\alpha t} \sin \beta t$ formam uma base do espaço solução e, consequentemente, a solução geral de (3.14) para $b^2 - 4ac < 0$ é

$$y(t) = e^{\alpha t} (c_1 \cos \beta t + c_2 \sin \beta t).$$

Observação 3.10. Pode-se pensar que $e^{\lambda_2 t}$, em que $\lambda_2 = \bar{\lambda}_1$ dará origem a outras duas soluções. Todavia, isto não ocorre, pois

$$e^{\lambda_2 t} = e^{(\alpha - i\beta)t} = e^{\alpha t} \left[\cos(-\beta t) + i \operatorname{sen}(-\beta t) \right] = e^{\alpha t} \left[\cos\beta t - \operatorname{sen}\beta t \right].$$

Portanto,

$$\tilde{y}_1(t) = \Re[e^{\lambda_2 t}] = e^{\alpha t} \cos \beta t = y_1(t)$$

е

$$\tilde{y}_2(t) = \Im[e^{\lambda_2 t}] = -e^{\alpha t} \operatorname{sen} \beta t = -y_2(t). \square$$

Exemplo 3.5. Determine a solução real do P.V.I.

$$\begin{cases} \ddot{y} + 2\dot{y} + 5y = 0\\ y(0) = 1, \ \dot{y}(0) = 3. \end{cases}$$

Solução: A equação característica $\lambda^2 + 2\,\lambda + 5 = 0$ possui raízes complexas $\lambda_1 = -1 + 2i$ e $\lambda_2 = -1 - 2i$. Portanto,

$$e^{\lambda_1 t} = e^{(-1+2i)t} = e^{-t} \cos 2t + i e^{-t} \sin 2t$$

é uma solução com valores complexos de $\ddot{y} + 2\dot{y} + 5y = 0$. Logo, pela Proposição 3.1, temos que

$$y_1(t) = \Re(e^{\lambda_1 t}) = e^{-t} \cos 2t$$
 e $y_2(t) = \Im(e^{\lambda_1 t}) = e^{-t} \sin 2t$

são soluções reais da equação. Mais ainda, elas formam uma base para o espaço solução. Portanto, a solução geral é

$$y(t) = e^{-t}(c_1 \cos 2t + c_2 \sin 2t),$$

onde c_1 e c_2 são constantes reais. Como y(0) = 1, temos $c_1 = 1$. Logo, $y(t) = e^{-t} (\cos 2t + c_2 \sin 2t)$. Isso implica que $\dot{y}(t) = -e^{-t} (\cos 2t + c_2 \sin 2t)$ $c_2 \sin 2t + e^{-t} (-2 \sin 2t + 2c_2 \cos 2t)$. Portanto, $\dot{y}(0) = 3$ implica que $c_2 = 2$. Logo, a solução do P.V.I. é

$$y(t) = e^{-t} (\cos 2t + 2 \sin 2t)$$
. \square

Exemplo 3.6. (Vibrações livres não amortecidas) Consideremos o sistema massa-mola enunciado no Capítulo 1, Subseção 1.1.3, cuja equação é

$$m\ddot{y} + ky = 0$$

ou

$$\ddot{y} + \omega^2 y = 0,$$

em que $\omega = \sqrt{k/m}$ (lembremos que k > 0 e m > 0).

A equação característica $\lambda^2 + \omega^2 = 0$ possui raízes complexas $\lambda_1 = i \omega e \lambda_2 = -i \omega$. Logo, $\varphi(t) = e^{i \omega t} = \cos \omega t + i \sin \omega t$ é uma solução com valores complexos que dá origem às seguintes soluções reais linearmente independentes

$$y_1(t) = \cos \omega t$$
 e $y_2(t) = \sin \omega t$.

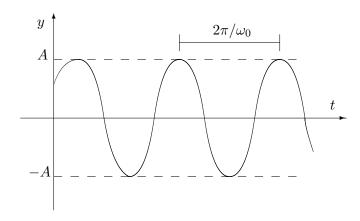
Portanto, a solução geral é dada por

$$y(t) = c_1 \cos \omega t + c_2 \sin \omega t$$
. \square

Observação 3.11. Para esboçar o gráfico de y(t), vamos reescrevê-la de modo mais apropriado: denotando $A = \sqrt{c_1^2 + c_2^2}$ e $\alpha = \arctan(c_2/c_1)$, podemos escrever

$$y(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t = A \cos(\omega_0 t - \alpha),$$

Logo, temos que y(t) está sempre entre -A e +A e, portanto, o movimento é periódico de periódico $2\pi/\omega_0$, amplitude A, frequência ω_0 e ângulo de fase α . O gráfico de y(t) é mostrado na figura abaixo.



Este movimento também é chamado de movimento harmônico simples. \square

EXEMPLO 3.7. (Vibrações livres amortecidas) Consideremos o sistema massa-mola, supondo agora que o meio oferece uma força de resistência proporcional à velocidade do corpo. Portanto, devemos resolver a equação

$$\ddot{y} + \frac{c}{m} \dot{y} + \frac{k}{m} y = 0.$$

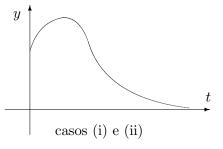
A equação característica é
$$m \lambda^2 + c \lambda + k = 0$$
, cujas raízes são:
$$\lambda_1 = \frac{-c + \sqrt{c^2 - 4 \, m \, k}}{2m} \, \mathrm{e} \, \lambda_2 = \frac{-c - \sqrt{c^2 - 4 \, m \, k}}{2 \, m}.$$

Consideremos as seguintes situações:

(i) amortecimento supercrítico ou forte $(c^2-4\,m\,k>0)$

Neste caso temos que λ_1 e λ_2 são reais e negativas. De fato, $\sqrt{c^2 - 4 \, m \, k} < c$. A solução geral

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}.$$

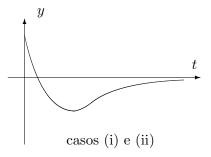


(ii) amortecimento crítico $(c^2 - 4 m k = 0)$

Como
$$c^2 - 4 m k = 0$$
, temos que $\lambda_1 = \lambda_2 = -c/(2 m)$.

Neste caso, a solução geral é:

$$y(t) = (c_1 + c_2 t) e^{-ct/(2m)}.$$

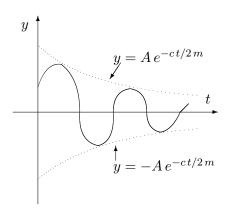


(iii) amortecimento subcrítico ou oscilatório $(c^2-4\,m\,k<0)$

Como $c^2 - 4mk < 0$, temos que λ_1 e λ_2 são complexos conjugados. Portanto, a solução geral é:

$$y(t) = e^{(-c/2 m)t} (c_1 \cos \mu t + c_2 \sin \mu t),$$

em que $\mu = \frac{\sqrt{4\,m\,k-c^2}}{2\,m}$ ou $y(t) = A\,e^{(-c/2\,m)\,t}\cos(\mu\,t-\alpha)$. Logo, a solução oscila entre duas curvas $y = -A e^{(-c/2m)t}$ e $y = A e^{(-c/2m)t}$. Portanto, representa a curva do cosseno com amplitude decrescente.



Nos três casos o movimento se "extingue" no futuro se existe atrito no sistema, ou seja, qualquer perturbação inicial é dissipada pelo atrito existente. Esta é uma das razões pelas quais os sistemas massa-mola são úteis nos sistemas mecânicos; eles podem ser usados para amortecer qualquer perturbação indesejada.

Exercícios 3.3. 1) Determine a solução geral de:

a)
$$\ddot{y} - \dot{y} - 2y = 0$$
. b) $\ddot{y} - 7\dot{y} = 0$. c) $\ddot{y} + 4y = 0$.

d)
$$\ddot{y} - 4\dot{y} + 13y = 0$$
. e) $\ddot{y} - 4\dot{y} + 4y = 0$. f) $\ddot{y} = 0$.

2) a) Seja $\lambda_1 = \alpha + i \beta$ uma raiz complexa de $\lambda^2 + (a-1) \lambda + b = 0$. Mostre que

$$t^{\alpha+i\beta} = t^{\alpha} t^{i\beta} = t^{\alpha} e^{(\ln t) i\beta} = t^{\alpha} \left[\cos(\beta \ln t) + i \sin(\beta \ln t) \right]$$

é uma solução com valores complexos da equação de Euler

$$t^2 \ddot{y} + a t \dot{y} + b y = 0. (3.16)$$

- b) Mostre que $t^{\alpha} \cos(\beta \ln t)$ e $t^{\alpha} \sin(\beta \ln t)$ são soluções reais de (3.16).
- 3) Determine a solução geral de:

a)
$$t^2 \ddot{y} + t \dot{y} + y = 0$$
, $t > 0$. b) $t^2 \ddot{y} + 2 t \dot{y} + 2 y = 0$, $t > 0$.

A EQUAÇÃO NÃO HOMOGÊNEA 3.4

Consideremos a equação não homogênea

$$\ddot{y} + a(t)\,\dot{y} + b(t)\,y = g(t),\tag{L.N.H.}$$

em que a(t), b(t) e g(t) são funções contínuas em um intervalo I e $g(t) \neq 0$.

Nos fenômenos físicos descritos por equação da forma acima, o termo g(t) representa, em geral, um "agente externo" atuando sobre