T Available online at www.sciencedirect.com _—
‘ Journal of

et ScienceDirect Differential
s 4 Equations
ELSEVIER Journal of Differential Equations 318 (2022) 323-343 _—

www.elsevier.com/locate/jde

Absolute stability and absolute hyperbolicity in systems
with discrete time-delays

Serhiy Yanchuk “**, Matthias Wolfrum ", Tiago Pereira “,
Dmitry Turaev ¢

A Institute of Mathematics, Technische Universitiit Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany
b Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin, Germany
¢ Instituto de Ciéncias Mateméticas e Computacdo, Universidade de Sao Paulo, Sdo Carlos, Sao Paulo, Brazil
d Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
¢ Department of Complexity Science, Potsdam Institute for Climate Impact Research, Potsdam, 14412, Germany

Received 27 March 2021; accepted 13 February 2022

Abstract

An equilibrium of a delay differential equation (DDE) is absolutely stable, if it is locally asymptotically
stable for all delays. We present criteria for absolute stability of DDEs with discrete time-delays. In the
case of a single delay, the absolute stability is shown to be equivalent to asymptotic stability for sufficiently
large delays. Similarly, for multiple delays, the absolute stability is equivalent to asymptotic stability for
hierarchically large delays. Additionally, we give necessary and sufficient conditions for a linear DDE to
be hyperbolic for all delays. The latter conditions are crucial for determining whether a system can have
stabilizing or destabilizing bifurcations by varying time delays.
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1. Introduction

Delay differential equations (DDE) play an important role in modeling various processes in
nature and technology. Examples are optoelectronic systems [1-7], population and infections
disease modeling [8—11,1,12—16], neuroscience [17-21], machine learning [22-26], mechanics
[27,10,28-31], and other fields. Driven by industrial developments and automatic control de-
vices, DDE theory was rapidly developing since the middle of the 20th century [32-34]. Several
monographs have been published, see, for example, [35-38,1,39,40].

It is a basic fact that the equilibria of a DDE do not change under variations of the delay
time. In general, their stability properties may change under such variations. Indeed, in many
cases increasing delay is known to induce additional instabilities. However, there is also the
case, called absolute stability, where the stability of an equilibrium remains unchanged for all
possible non-negative delay times. We consider linear DDEs with discrete delays

iy =a <¢)+fjA (t =) (1)
J— — — ),
dt (19 kX k
k=1
with x e R", 74 >0, Ag, Ay e C"", k=1, ..., m. System (1) is the linearization at an equilib-

rium of autonomous DDEs. The stability of DDE (1) is described by the roots of the characteristic
quasipolynomial

m
O =P, e ™, ... e ™) =det [x I—Ag— ZAke_“":| =0, )

k=1

where [ is the identity matrix.

We present a new criterion for the absolute stability of Eq. (1), i.e., a necessary and sufficient
condition on the matrices Ay such that all roots A of the quasipolynomial (2) have negative
real parts for arbitrary non-negative delays tx. Our Theorems 2 and 3 generalize known results
[32,41,35,42-53,12,54,55] and have three main advantages:

e simple to check (conditions on compact sets);
o they give necessary and sufficient conditions;
e geometric interpretation using certain limiting spectral sets.

Moreover, the absolute stability appears to be equivalent to the asymptotic stability for hierarchi-
cally large delays 1 < 11 < - -+ < 15, Which, for the case m = 1, is the asymptotic stability for
a single large delay.

Additionally, we provide a criterion for system (1) to be hyperbolic for all time delays, i.e.,
the condition for the absence of the roots of the characteristic polynomial A with zero real parts.
In particular, this means that under the obtained conditions one cannot change the stability of the
equilibrium in (1); it remains either asymptotically stable or unstable for all delays.

Let us first give a brief overview of the known results on the absolute stability. One of the first
conditions is due to Pontryagin [32]. This criterium involves the verification of certain properties
of the characteristic equation evaluated along the whole imaginary axis A(iy) as well as some
additional implicit conditions. The Pontryagin conditions have been used in many applications
[35,56].
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In [44], Brauer gave sufficient conditions for the absolute stability of the characteristic equa-
tion

FO)+Ge T =0, 3)

which is a polynomial of the first order in e~*. Comparing it with (2), this corresponds to a
single delay and a rank one matrix A;. On the other hand, equation (3) can appear in some
cases with distributed delays, which we do not consider here. The Brauer’s conditions have been
applied in, e.g. [12,43].

Cooke and van der Driessche also considered Eq. (3) as well as a generalization to multiple
delays in [43]; they provided sufficient conditions for the absolute stability. Chin Yuang-Shun
[41] gave criterion for the case of one delay. This criterion requires Q(iy) # 0 for all y e R
and all t; > 0, which includes the time-delay as a parameter. Instead, a practically employable
criterion for absolute stability in the case of a single delay should be delay-independent and given
by an at most one-parameter condition. In section 4, we provide such a criterion and explain its
geometrical meaning. The Pontryagin type conditions, in contrast, are hard to check, and in the
case of multiple delays they are very laborious.

Several other sufficient conditions are given in [42,51], for the case of two delays in [45],
neutral equations in [57], and some special types of equations in [46—50,55]. In [58,54], a strong
delay-independent stability is used to give sufficient conditions for the absolute stability, which
is called there weak delay-independent stability. Applications to control problems are considered
in [52,53].

2. General criterion for absolute stability

First, we introduce some notation and definitions. Our notation is that of Ref. [37]. Given a
bounded linear operator A, its spectrum is denoted by o (A) and its spectral radius is denoted by
p(A). Ann x n matrix A is Hurwitz if Ro (A) < 0.

Given a finite family of operators Ay : C* — C" for k ={0, 1, ..., m} of Eq. (1), we consider
feedback phases ® = (¢, ..., ¢n) € T™ and

m
S(®)=Ag+ ) Are'#.
k=1

Our key object is the phase dependent spectrum o (S(®)) C C, which will contain key infor-
mation about the stability of the system.

Definition 1. System (1) is absolutely stable if all roots A of the characteristic equation (2) pos-
sess negative real parts ) (1) < 0 for all 7 >0, k =1, ..., m. Similarly, we call (1) absolutely
hyperbolic if all roots have nonzero real parts for all delays.

As follows from the general DDE theory [37], in case of absolute stability, all solutions of
the initial value problem for DDE (1) are exponentially asymptotically stable, i.e. x(¢; ¢) — 0
exponentially fast with # — oo for any initial function ¢ () = x(0; ¢), 0 € [— maxy 7%, 0].

The following theorem provides a general criterion for the absolute stability in the case of
multiple discrete delays.
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Theorem 2. System (1) is absolutely stable if and only if the following conditions are satisfied:
(A1.1) [instantaneous stability]: Ag is Hurwitz.
(A1.2) [nonsingular S(0)]: S(0) is nonsingular.
(A1.3) [no resonance]: iw ¢ o (S(P)) forall © € T™ and w #~ 0.

Moreover, the conditions (A1.2) and (A1.3) are necessary and sufficient for system (1) to be
absolutely hyperbolic.

Let us discuss the meaning of the above conditions. Condition (A1.1) [instantaneous stabil-
ity] means that the corresponding instantaneous ODE system x = Agx must be exponentially
stable. Condition (A1.2) [nonsingular S(0)] is equivalent to the requirement that the charac-
teristic quasipolynomial (2) does not possess a zero root. We will later show that, taking into
account (A1.1) [instantaneous stability] and (A1.3) [no resonance], the condition (Al.2) can
be replaced by the requirement that S(0) is Hurwitz. Hence, (A1.2) [nonsingular S(0)] con-
tributes to the exponential stability of the ODE system x = S(0)x obtained from (1) for zero
delays.

Condition (A1.3) [no resonance] means that the spectrum of the m-parametric set of matrices
S(P) cannot cross the imaginary axis apart from the origin. We will show later that, taking
into account (A1.1) [instantaneous stability], the condition (A1.3) is equivalent of having S(®)
“almost Hurwitz”, i.e., fio (S(P)) < 0 except that the possible zero eigenvalue. We will also
show that o (S(®)) can be in a certain sense related to the asymptotic spectrum in delay systems
with hierarchically long delays. Moreover, purely imaginary eigenvalues i of o (S(®)), which
we call resonances, appear as characteristic roots of (2) at an infinite sequence of resonant delay
times.

Moreover, purely imaginary values iw € o (S(®)) correspond to certain “resonances” and the
appearance of critical characteristic roots for countable number of delays.

The three conditions (Al.1), (A1.2), and (A1.3) are finite-dimensional problems involving
the calculation of the spectrum of some n x n matrices. The condition (A1.3) [no resonance]
contains a compact m-parameter family of matrices.

The conditions for absolute stability can be equivalently formulated as follows.

Theorem 3. System (1) is absolutely stable if and only if the following conditions are satisfied:
(A1.2) [nonsingular S(0)]: S(0) is nonsingular.
(A2.2) [almost Hurwitz S(®)]: S(®) is Hurwitz, except for a possible zero eigenvalue.

The proof will be given in Sec. 6.

Combining the asymptotic spectral theory from [59,60] for the case of one delay with Theo-
rem 2, we can show that the absolute stability is determined by the stability at large delays. In
particular, we obtain the following

Corollary 4. System (1) with one delay is absolutely stable if and only if it is asymptotically
exponentially stable for all sufficiently large delays, i.e. there exists ty, such that X(1) < 0 for all
characteristic roots and all T > 1;,.

In fact, Corollary 4 is a consequence of the following more general statement for the case of
multiple delays.
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Theorem 5. System (1) is absolutely stable if and only if the system with hierarchical time delays

n:e*l, rk:vke*k, k=2,...,m, @

is asymptotically exponentially stable for all sufficiently small € < 1 and all v; € [1,1 + <=1,

The stability for one large delay has a useful interpretation from the point of view of a singular
map. By rescaling the time t = T' /e with e = 1/, we obtain

ex(T)=Aox(T)+ A1x(T — 1). 5)

By neglecting formally the left-hand side, we obtain the singular map
x(T)=—Ay"Aix(T - 1). (6)
This hints that the stability of the system can be obtained at a formal level by a discrete
dynamical system. There are many publications devoted to relations between the DDE (5) and the

singular map (6), see [61-64,37,65-70]. In fact, in order to obtain equivalent stability conditions,
one should consider an extended singular map

x(T) = (iwl — Ag) "L A1e/%x(T — 1). (7

We will provide a discussion about this form in Sec. 4.5. Using this dynamical system we can
conclude absolute stability as shown in the following

Corollary 6. System (1) for one delay is absolutely stable if and only if

e Ag is Hurwitz;

o the discrete dynamical system (7) is asymptotically exponentially stable for w # 0;

e for w =0, the discrete dynamical system (7) possesses multipliers ( with || < 1 and pu # 1,
i.e., it is either asymptotically exponentially stable or neutral with u = €'%, ¢ # 2rk.

Organization of the manuscript. We provide examples of the application of Theorem 2 to scalar
DDE with multiple delays in Sec. 3 and give a geometric interpretation of the obtained criterion
for one delay in a system of DDE’s in Sec. 4 emphasizing the role of asymptotic spectrum for
large delays. We consider the case of multiple hierarchical delays in Sec. 5. We offer proofs of
Theorems 2 and 3 in Sec 6. Finally, we provide conclusions and some open problems in Sec. 7.

3. Scalar DDEs

In the case of scalar DDEs

i) =ax(t)+ Y ax(t—7), a;jeC,.j=1,....m, )
k=1

the absolute stability conditions can be significantly simplified.

327



S. Yanchuk, M. Wolfrum, T. Pereira et al. Journal of Differential Equations 318 (2022) 323-343

Corollary 7. System (8) is absolutely stable if and only if the following conditions are satisfied

m
N (ao) + Y lax| <0 for N(ap) #0, ©)
k=1
m m
a0+Z|ak| <0 and Zak;éOfor I(ag) = 0. (10)
k=1 k=0

Proof. We verify that the conditions of Theorem 3 are equivalent to (9)—(10). In order to simplify
the condition (A2.2) [almost H}eritz S(®)] for the scalar case, we observe that the maximum of
the real part of ag + kaZI are'?t is achieved at g = —argay, k=1, ..., m, and it equals

m m
max | 9% [ ao + k) ) =9 (ag) + . 11
) wm( (ao ;ake )) (@0) + ) lax| (11)

""" k=1

For J(ap) # 0, this isolated maximum has nonzero imaginary part and must be negative ac-
cordingly to (A2.2). Therefore, we obtain (9) with strict inequality as an equivalent to (A2.2).

For J(ag) = 0, the maximum (11) is ap + >y, lax|. As zero is allowed accordingly to the
condition (A2.2) [almost Hurwitz S(®)], we obtain non-strict inequality in (10).

Finally, we observe that ka:() ay # 01is equivalent to (A1.2) [nonsingular S(0)]. This inequal-
ity must be added in (10) only, since ) ;. ax # 0 is satisfied under the condition (9). O

Numerical examples with scalar DDEs will be presented in Secs. 4.4 and 5.3.
4. The case of one delay, geometric interpretation

Since the case of one discrete delay appears most often in applications, we discuss it here in
more detail. In particular, we give a geometric interpretation using the asymptotic spectrum for
large delay.
4.1. Auxiliary results

The following technical Lemmas will be needed.
Lemma 8. Let A, B € C"™ " If A+ Be'? is Hurwitz for all ¢ € T, then A is Hurwitz.
Proof. Assume the opposite, that is Ag € 0 (A) with i (L¢) > 0. Consider the function

PG 2) =det (<Al + A +2Be'),

which is a polynomial in A. There exists a continuous branch of complex roots A(z) of this
polynomial such that A(0) = Ag, R(L(0)) > 0 and 9 (A(1)) < 0. Due to continuity, there exists a
real number Z € [0, 1) such that A(Z) = i®. Hence, we have P (i@, Z) = 0. Consider P(iw,z) =0
as a polynomial in z. If this polynomial depends trivially on z at w = @, then P(i®,1)=0and
we immediately obtain the contradiction to the Hurwitz property of A + Be'?. If P(iw, 7) is a

nontrivial polynomial in z at w = &, then there exists a continuous branch of complex roots z(w)
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such that z(®) = Z, z(c?))| < 1, and |z(w)| = oo as w — oo. Hence, there exists @ > @ such
that |z(®)| = 1. This means that P(i®, ¢ *&¥@) = (, and the matrix A 4+ Be!(#12182(@) i not
Hurwitz. The contradiction proves the Lemma. O

Lemma 9. Let A € C"*" be Hurwitz. Then, for any B € C"*", one of the following three mutu-
ally exclusive cases occurs:

L A+ Be'% is Hurwitz forall o € T ;

1I. There exist @ # 0 and ¢ such that i@ € o (A + Bei‘z);

III. There exist one or several values @1, ..., ¢ (I <n)suchthat0 € o (A + Bei‘ﬁi), j=1,...,1,
and A + Be'? is Hurwitz for all ¢ # @i j=1,...,L

Proof. We must show that if A + Be'? is not Hurwitz for some @, then either the case IT or 11l is
realized.
Assume that A + Be'% is not Hurwitz, i.e.,

det (—,\11+A+Bel"ﬂ0) — 0 with (%) > 0. (12)
Consider the function
O(h. 7) = det (—M YA+ zBei%) ,

which is a polynomial in A. There exists a continuous branch of complex roots A(z), z € C,
which solves the polynomial Q(A(z),z) = 0 and satisfies A(1) = A1, 9N(A(1)) > 0. Moreover,
9N (A(0)) < 0 due to the fact that A is Hurwitz. Hence, due to continuity of A(z), there exists Z
with |Z| < 1 such that A(Z) = i@ and R (A(z)) < 0 for all |z| < |z|. That is, we obtain

0>, 2) = det (—idl+ A +2Be™) =0, [2| <1, (13)

R (A (2)) <0 for all |z] < |Z]. (14)

Consider the case |2| =1 and denote Z = ¢'%. For convenience, we rewrite Egs. (13)-(14) for
this case:

det (—idl + A+ Be/ 09 =0, (15)

R (A(z)) <O for all |z] < 1. (16)

Due to (16), by continuity, we obtain R (A(ei‘p)) < 0 for all g. Hence, it holds that either i® €
o (A + Bei(<ﬂ0+¢’)) or A 4+ Be'? is Hurwitz for all ¢ # @o + ¢. There can be up to n isolated

pairs (@, ¢) satisfying (15).

If there are @ # 0 among the solutions of (15), then we immediately obtain the case II of
Lemma with @ = @ and @ = ¢g + ¢. If there are only zero values @ = 0, we obtain the case III
of Lemma with ¢ = ¢p + ¢.

Consider the case |2| < 1 and the function

O(iw, 7) = det (—ia)I FA+ zBei‘p>
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as a polynomial in z. We have, in particular, from (13), that z(&) = Z, |Z| < 1. The polynomial
Q(i®, 7) depends non-trivially on z, i.e., some coefficient of this polynomial does not vanish.
Indeed, otherwise we obtain det (—i®l + A) = Q(i®, 0) = Q(i®, 2) = 0, which contradicts the
assumption that A is Hurwitz. Therefore, there exists a branch of complex roots z(w) of Q(iw, 2),
which depends continuously on w, and z(®) = Z, |Z| < 1. Moreover, it is easy to see that |z] — oo
as |w| — o0o. Due to continuity, there exist @; € (@, 00) and @ € (—o0, ®) such that ’z(d)l,g)| =
1. The two points @1 > cannot be zero at the same time. Let @ be such nonzero point. Therefore,
we have shown that i® € o (A + Bei‘z)) with ¢ = ¢o + argz(®). This corresponds to the case
II. O

4.2. Absolute stability conditions in terms of extended singular maps (7)

The following lemma shows that condition (A2.2) [almost Hurwitz S(®)] can be recast in
terms of a spectral radius criterion.

Lemma 10. Assume Aq is Hurwitz. Then the following statements hold:
() e ¥ co ((iw]— Ag) ! Al) ifand only ifiw € o (Ao + Alei‘/’).
(1) p[(iwl — Ag)™" A1] < 1 for all w € R if and only if Ao+ A1e'? is Hurwitz for all ¢ € S'.
(1) p [(iw] — Ag) " A1] < 1 for all @ # 0 if and only if R} [0 (Ao + A1e'?) \ {0}] < O for all
pesSh

Proof. (I) follows from the equivalent expressions

det [e_i‘pl — (iw—Ap)~! Al] —0,

det [ia)l — Ay — Alei‘p] =0.

(IT) Assume p [(ia) —Ag)~! Al] < 1 for all w € R. Then (I) implies that the matrix Ag +
A1e'? possesses no purely imaginary eigenvalues. Since A is Hurwitz, Lemma 9 implies that
Ao + A1€'? is also Hurwitz.

To prove the converse, assume Ag + Ale“” 18 Hurwitz and let us show that the condition
P [(ia) — Ag)~! A]] < 1 holds for all w. It clearly holds for sufficiently large w. If, it fails for
some w, then, there must exist @ = wp such that ¢'¢ € o [(iwo —Ap)~! A1] = 1. However, the
statement (I) implies that Ag + A ¢'? is not Hurwitz.

(IIT) This statement follows from the continuity of eigenvalues as functions of w and state-
ments (I) and (II). O

With Lemma 10 we obtain that for systems with one delay the criteria for absolute stability
from Theorems 2 and 3 can be equivalently reformulated as follows.

Lemma 11. System (1) with a single delay is absolutely stable if and only if the following condi-
tions are satisfied:

(A): Ag is Hurwitz.

(B): Ag + A1 is nonsingular
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©
p((iwI—Ao)*‘ Al) <1 forall w#0. (17)
Lemma 11 implies immediately the statement of Corollary 6.
4.3. Absolute stability and asymptotic spectrum

In view of Corollary 4, the stability for large delays and the absolute stability are equivalent.
In this section, we discuss this relation in more details. The spectrum of DDEs can be well ap-
proximated in the limit T — oco. More specifically, the spectrum of DDEs with one large discrete
delay can be generically divided into two parts [59,60,69]:

(1) The strongly unstable part Sg,, which is approximated by the unstable spectrum of Ao, i.e.
o (Ap) with Ro (Ag) > 0, and

(ii) the pseudo-continuous spectrum Spc, which is approximated by the curves

1
B1={ZG(C:z=—yj(w)+ia), weR, j=1,...,m1} (18)
T
in the complex plane. The functions y;(w) are given by

yi(w)=—In|Y;(w)|, (19)

where Y (w), j = 1,rankAy, are the roots of the spectral polynomial
pliw,Y)=detlio-1—Ag— A1Y]. 20)

In particular, the functions y;(w) are continuous except for the isolated points w; where
lim,, , ¥j (@) = Z00. The points w; where lim,, ., ¥;(w) = +00 are determined by the con-
dition iws € 0 (Ap). Clearly, if such a point exists, it leads to an instability for large delays.

Definition 12. The set (18) is called the asymptotic continuous spectrum [59].

We are now ready to provide an interpretation of the conditions of Lemma 11 in terms of the
asymptotic spectrum. Condition (A), i.e. R (o (Ap)) < 0, is also the same as (Al.1) [instanta-
neous stability] in Theorems 2 and 3. It guarantees that, first, the strongly unstable spectrum is
absent, and, second, the asymptotic continuous spectrum possesses no singularities, see Fig. 1.
Condition (B) is the same as (A1.2) [nonsingular S(0)] in Theorems 2 and 3, and it excludes the
existence of the trivial eigenvalue A = 0. Condition (C) guarantees that the asymptotic continu-
ous spectrum is located in the open left half of the complex plane 9(A) < 0, possibly touching
the origin, see Fig. 1. Indeed, let u be an eigenvalue of ((wl — Ao)_1 A1. Then the condition (C)
from Theorem 11 can be rewritten as

det [iwl — Ap— M”Al] =0, |ul<l, @20,

which means that all roots Y;(w), j = 1,rankA;, of the spectral polynomial (20) satisfy
|Yj(w)| > 1 for w # 0, implying y; () < 0 for all w # 0.
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Fig. 1. Spectrum (blue points) and the asymptotic continuous spectrum (18) (orange lines) of the scalar system (21). The
upper panels (a-c) correspond to an absolutely stable case for the parameter values ag = —1 +i and a; = 0.5. Time-
delay is increasing from (a) to (c): 7 = 0.5 (a), T =5 (b), and 7 = 20 (c). Similarly, the lower panels (d-f) illustrate a case
without absolute stability for the parameter values ag = —1 and a1 = —1.5. Time-delays are: T = 0.5 (d); T =5 (e), and
7 =20 (f). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4.4. Scalar DDEs with one delay
As a simple illustration, we present the complex scalar DDE
x() =aox(t) +a1x(t — 1) 21)
with the characteristic equation
A —agp —ale_)‘r =0, (22)
ap, a1 € C. For this case, the real part of the asymptotic continuous spectrum has a unique global

maximum at w = J(ap). Indeed, the spectral polynomial (20) has one root ¥ = (iw — ag)/a;
leading to

1
7 (@) = =5 In((@= @) + ((@)?) +Injai|
with

N(ap)
ai

. (23)

Iafl:lﬁy(w) =y(3(ap)) =—1In

The absolute stability criterion for (21) follows from Theorem 7:

Corollary 13. The DDE (21) is absolutely stable if and only if the following conditions are
satisfied:

R(ao) + lar] <0, S(ao) #0

(24)
ap+lay| <0and ag+a; #0, J(ag) =0.
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It is easy to see that the conditions of the Corollary 13 imply the stability of the asymptotic
spectrum. The asymptotic continuous spectrum is allowed to touch the imaginary axis at the
origin, and this is the case when ag + |a;| = 0, however, the additional condition ag + a; # 0
forbids the appearance of the trivial eigenvalue.

Finally, we notice that the asymptotic continuous spectrum crosses the imaginary axis at the

points
o~ 2 "\ 2
wy =3(a1) £4/laz|” — R(ar))

in the unstable case. The values wp are possible frequencies of the Hopf bifurcations in corre-
sponding nonlinear systems.

4.5. Discussion of Corollary 6

Here we explain the physical meaning of the extended singular map (7), which appears in
Corollary 6 and determines the absolute stability. According to the corollary assumptions, it
must be exponentially stable for all @ # 0 and any ¢ € T. The map (7) can be obtained from
the single-delay DDE by substituting x(f) = y(1)e'“!/¢, ¢ =w/e, and formally neglecting the
term ¢y. From the physical point of view, equation (7) regulates the amplification or damping of
rapid oscillations with frequency w/e. By rescaling the time back to the original form, these are
frequencies w.

5. Multiple delays
5.1. Equivalence of absolute stability and asymptotic stability for hierarchically large delays

In this section we show that the criterium for the absolute stability for arbitrary positive delays
is equivalent to the stability for hierarchically large time-delays, i.e., the asymptotic stability for
l € 11 € --+ <K 1. Such an equivalence is a generalization of Corollary 4 for one large delay.
Interestingly, due to the symmetry of the conditions for the absolute stability with respect to the
numbering of the delays, the order t; in this case does not play any role.

For the proof, we will need several Lemmas.

Lemma 14. Let A € C"*" and iwg € o (A). Then, for any B € C™**", one of the following two
mutually exclusive cases occurs:

L There exist ® #0 and ¢ € T such thati® € o (A + Bei¢).

II. wg=0and0eo (A + Bei‘/’)forall peT.

Proof. Consider the function

O(iw,z)=det(—iwl+ A+ zB).

The Lemma’s assumption implies Q (iwp, 0) = 0. Two cases are possible:

1. The polynomial Q(iwo, z) does not depend on z. In such a case, for arbitrary z, we have
Q(iwy, z) = Q(iwp, 0) = 0. In particular, it holds Q(iwp, ¢'?) = 0, hence, iwy € o (A + Be'?)
for all ¢. If wg = 0, then the case II is realized. For wg # 0, the case I is realized.
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2) The polynomial Q(iwop, z) depends non-trivially on z. Then, there exists a branch of com-
plex roots z(w) solving Q(iw, z(w)) = 0, which depends continuously on w, and z(wp) = 0.
Moreover, it holds |z(w)] — oo as |w| — oo. Due to continuity, there exist @ € (wg, 00)
and @) € (—00, wp) such that |z2(&;2)| = 1. Hence, we obtain i@, € o (A + Be'?12) with
@12 = arg(z(w1,2)). Since the two values @ > cannot be zero simultaneously, we obtain the
case [ of the Lemma. O

Lemma 15. Let Ag € C"*" be Hurwitz and Ay € C"*", k =1, ..., m. Then, one of the following
three mutually exclusive cases occurs:
1. S(®) is Hurwitz for all ® € T™;

1I. There exist @ #~ 0 and ® e T"™ suchthati® € o (S(@));

IIl. There exists a nonempty set To C T™, To £ T™, such that 0 € o (S(®)) for © € Ty, and
S(®) is Hurwitz for all ® € T™ \ Ty.

Proof. The proof follows from the consecutive application Lemmas 9 and 14 to the matrices

,
My =Ag+ ) Ape'® r=0,..m, (25)
k=1

where M,_1, r = 1,..,m, plays the role of A and A, plays the role of B. Note that in this
way Case I of Lemma 9 transfers the Hurwitz property to the next level », while Case II of
Lemma 9 provides a resonance, which is then by Lemma 14 transfers to the next level. Case
IIT of Lemma 9 detects a zero eigenvalue, which is transferred by Case II of Lemma 14. By
considering all possible logical chains, we see that I-III are the only possibilities that can be
realized.

I: Caselof LemmaO forall r =1, ..., m. In this case, all matrices are Hurwitz for all ®.

II: Case I of Lemma 9, followed by Case II of Lemma 9, possibly followed by Case I of
Lemma 14. Here, we have iw € o (M, ) for some r <m, o # 0. Then the sequential appli-
cation of Lemma 14 m — r times leads to i® € o (S(®)) with & # 0 and some ®.

II: Case I of Lemma 9, followed by Case III of Lemma 9, followed by Case I of Lemma 14.
Here, the matrix M, contains zero eigenvalue for some & and otherwise it is Hurwitz for
all other ®. At some further application of Lemma 14 on some level r; > r, there appears a
resonance w £ 0 such that iw € o (Ao + 221:1 Akei‘ik), r < r1 < m. Further application of
Lemma 14 m — r; times leads to the statement IT of this Lemma.

III: Case I of Lemma 9, followed by Case III of Lemma 9, followed by Case II of Lemma 14.
Similarly to the previous case, some matrix M, contains zero eigenvalue and otherwise
it is Hurwitz for all other ®. At some further applications of Lemma 14, only case II of
Lemma 14 is realized. We must only show that 7o # T™. Indeed, assuming opposite, we
have 0 € S(®) for all ®, which implies O € Ap and contradicts the assumption of Ay Hur-
witz.

II: CaseI of Lemma 9, followed by Case III of Lemma 9, followed by Case II of Lemma 14,
followed by Case I of Lemma 14. This logical chain is similar to the previous one, with only
difference that the case I of Lemma 14 is realized at some later iteration. O
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Lemma 16. Let Ay € C™", k=1,...,m, and iwy € o(Ag). Then, one of the following two
mutually exclusive cases occurs:

L. There exist @ # 0 and & such that ié> € o (S(P));

1. wg=0and 0 € o (S(P)) forall ® € T™.

Proof. The proof follows from the sequential application of Lemma 14 in a similar way as
above. O

Lemma 17 (Reappearance of resonances). Let Ay € C"", k=0, ...,m, and iwy € o (S(P)),
wq # 0. Then, it holds

m
det |:—ia)01+ Ao+ Z Akeiwork:| =0 (26)
k=1
with
2
‘L’kz—nnk—ﬁ, nig €. 27
o o

That is, iwg solves the characteristic equation (2) for countably many time-delays (27).

In particular, among these time-delays, one can choose the set {t1,...,T,} of hierarchically
large delays, which satisfy the condition (4) with arbitrary small ¢ > 0. Such delays are hierar-
chically ordered so that Ty /Tk+1 = € (VK [Vi+1)-

Proof. The fact that Eq. (26) holds for time-delays (27) can be checked by substitution.
Let us show that time delays can be chosen to be hierarchical, i.e., satisfy the condition (4)
with arbitrary small ¢ > 0. We denote

1 o
E= — = D —
T 2mnp — @

which is a small parameter for sufficiently large n;. We assume, in particular, that n] > wg. Such
a definition of ¢ implies equality (4) for k = 1.

Let us show that ng, and, hence i, can be chosen in such a way that (4) holds for some
v e[1,14+¢&51). The equality

2nng — @k k
= ————— = V&
wo
leads to
Pk woVk
ng=— . 28
K= om T anek (28)

2 ek
lwol

By increasing v from 1 to 1 + the value of nj in Eq. (28) changes by 1. Hence, there exists

such vy € [1, 1+ %) that n; admits an integer value. Finally, by choosing ¢ sufficiently small

such that % <1, weobtainthat v € [1, 1 +&5~1). O
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We remark that Lemma (17) generalizes some of the statements shown for one delay in [71].

Proof of Theorem 5. It is clear that the absolute stability implies the stability for hierarchically
large time delays. Therefore, it remains to show that conditions (A1.1) [instantaneous stability],
(A1.2) [nonsingular S(0)], and (A1.3) [no resonance] of Theorem 2 are necessary for the stability
of the systems with hierarchically large time delays (4).

1. First, we show that (A1.1) [instantaneous stability] is necessary. Assume the opposite, i.e.,
the condition (A1.1) of Theorem 2 does not hold. Then either iwg € o (Ag) or Ag € o (Ag) with
Nf(ro) > 0.

la: Consider the case iwp € o (Ap). Then, Lemma 16 implies that one of the two cases can
occur:

laa: i® € o (S(P)) with some & # 0. In such a case, Lemma 17 implies that i@ is a solution
of the characteristic equation for hierarchically large time delays (4). We obtain the contradiction
to the absolute stability and, hence, (A1.1) holds.

lab: wp =0 and 0 € o(S(P)) for all & € T™. In particular, it holds 0 € ¢ (S(0)), which
means that A = 0 is an eigenvalue for arbitrary time-delays. This contradicts the absolute stability
assumption for hierarchically large delays, hence, (A1.1) holds.

1b: Consider the case Ao € o (Ag) with R(ho) > 0. Let 7 = vre ¥ be hierarchically large
delays, and the corresponding characteristic equation

m
P, ()) =det |:—)»I + Ao+ Z Ake)‘u"sk:| =0. (29)
k=1

Let U(Ap) be a sufficiently small open neighborhood of Ag such that it does not contain other
eigenvalues of Ag, and R (U (1p)) > 0. Then, the holomorphic function P, ()) converges uni-
formly to det[—Al 4+ Ag] for ¢ — 0. According to the Hurwitz theorem, the characteristic equa-
tion (29) has an unstable root in A € U(Ag) for all sufficiently small . This contradicts the
asymptotic stability assumption for hierarchically large delays, and, hence, (A1.1) holds.

2. We show that (A1.2) [nonsingular S(0)] is necessary. Assume that the condition (A1.2)
of Theorem 2 does not hold. Then 0 € o(S(0)) and, hence the characteristic root A = 0 solves
Eq. (2) for all delays. This contradicts the asymptotic stability assumption for hierarchically large
delays, and, hence, (A1.2) holds.

3. We show that (A1.3) [no resonance] is necessary for the stability of systems with hierarchi-
cally large time delays. Assume (A1.3) does not hold. Then there exists

iwg €0 (S(P), wy#O0.

Lemma 17 implies that there are hierarchically large time delays, for which there exists the eigen-
value iwg. This contradicts the asymptotic stability assumption and, hence, (A1.3) holds. O

5.2. Asymptotic spectrum for multiple hierarchically large delays and its relation to the
conditions for absolute stability

Let us briefly review some concepts for the spectrum of systems with hierarchically large
time-delays 7, = vge X from [72]. This spectrum can be generically divided into m + 1 parts

corresponding to different timescales:
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(i) The strongly unstable part Sg,, which is approximated by the unstable spectrum of Ay, i.e.
o (Ap) with i (Ap) > 0.

(i1) The asymptotic continuous spectrum on different timescales can be described by the fol-
lowing sets

Bij={zeCi-|¥i ;@ 1. 00| +io, weR}, (30)
where k =1, ..., m. The functions Yy ;j(w, ¢1, ..., ¢r—1) are the j-th roots of the spectral poly-
nomial

k—1
Pr(w,@1,...,0k—1,Y) =det |:ia) -I—Ag— ZAlele — Aij| , (€2))
=1

where the index j numbers the roots. The sets By, ; correspond to the eigenvalues with the real
parts converging to zero as €. For m = 1, the sets By, contain the asymptotic continuous spec-
trum of systems with one large delay 7.

In the non-degenerate case of det A,, # 0, the asymptotic spectrum has the form

rank A,
sUl U |ul U
k=1,....m—1 j=1

j=I1,....,rank Ay

where B,j ;= By, j () {z: Mz > 0}. That is, for all spectral components that correspond to the

convergence of real parts as (’)(sk) with k =1,...,m — 1, only the unstable part is included. The
stable part of the asymptotic continuous spectrum can contain only By, ;, which has the slowest
convergence & of the real parts to zero. This implies that the destabilization of the system with
hierarchical delays with det A,, # 0 can occur only due to some B, ; spectral component, which
is caused by the largest delay 7,,,. In a degenerate case of det A,,, = 0, stable parts of other spectral
components may appear as well, see more details in [59,5,7,72].

Taking into account different part of the asymptotic spectra, we can interpret the role of the
conditions of Theorems 2 and 3 for the spectrum of systems with hierarchical time delays. Con-
dition (A1.1) [instantaneous stability] guarantees the absence of the strongly unstable spectrum.
Condition (A1.2) [nonsingular S(0)] guarantees the absence of the zero eigenvalue. Conditions
(A1.3) [no resonance] and (A2.2) [almost Hurwitz S(®)] guarantee that the asymptotic continu-
ous spectrum is stable and do not cross the imaginary axis.

5.3. lllustration in the case of two delays
Fig. 2 illustrates the spectrum of the scalar DDE with two delays
x(t) =aox(t) +aix(t — 11) + arx(t — 1). (32)
In particular, Figs. 2(a)-(c) show an absolutely stable case for different values of time-delays.
With the increasing of the delays, the spectrum fills certain regions of the complex plane but stays
stable. Figs. 2(d)-(f) illustrate the case without absolute stability. One can observe a stability for

small delays and destabilization with the increasing of the delays.
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Fig. 2. Spectrum (blue points) of the scalar system (32) with two delays. The upper panel (a-c) corresponds to an abso-
lutely stable case for the parameter values ag = —1+i, a; = 0.5, and ap = 0.3. Time-delay is increasing from (a) to (c):
11 =0.5, 19 =2.5(a), 11 =5, 1p =25 (b), and 71 = 20, ) =400 (c). The lower panel (d-f) illustrates the case without
absolute stability for ag = —1, a; = —0.7, and ap = 0.5 4 0.1i. Time-delays are: 11 = 0.5, 10 =2.5(d), 11 =5, 1p =25
(e), and 71 = 20, p =400 (f).

6. Proof of Theorems 2 and 3

Lemma 18. Let A € C"*" be not Hurwitz and 0 ¢ o (A). Then, for any B € C"*", there exists
¢ € T such that the matrix A + Be'¥ is not Hurwitz and ) € 0 (A + Be'?) with » # 0 and
R > 0.

Proof. 1. Consider first the case iwg € 0 (A), wg # 0. Then Lemma 14 implies that i® € A +
Be'?, & + 0 for some @. Thus, the statement of the Lemma follows with A = i® and ¢ = .

2. Let & € 0(A) with R(1) > 0. The following proof uses similar ideas as in the proof of
Lemma 9. Consider the function

O\, z)=det(—AI+A+zB).

As a polynomial in A, it possesses a continuous branch of roots A(z) such that R(1(0)) > 0. Due
to continuity of A(z), two cases are possible:

2a. M(A(z)) > O for all z with |z| < 1. In this case, taking z = ¢'¢, we obtain that A 4 Be'?
contains an eigenvalue with 9i(A(z)) > O for all ¢.

2b. There exists Z such that A(Z) = i@ and % (A(z)) > O for all |z| < |z|. That is, we obtain

Q(i@,2) =det(—idl+ A+2B)=0, [3] <1, (33)

N (A(2)) > 0 for all |z| < |Z]. (34)

2b-i. Consider the case |2| = 1. We denote Z = ¢/%. If & # 0, we obtain i& €A+ Be'? which

is needed fo_r the proof. If @ # 0, we observe that % (A(z)) > 0 for all z = e'?. Moreover, the
equality A(e’?) = 0 cannot hold for all ¢, since, otherwise, 0 € o (A + Be'?) for all ¢, which is

only possible for 0 € o (A). Therefore, there exists ¢ such that A € o (A + Bei¢) with A # 0 and
R > 0.
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2b-ii. In the case |2| < 1, consider the function

O(iw,z) =det(—iwl+ A+ zB)

as a polynomial in z. It is nontrivial in z at @ = @ and z = Z, and there exists a continuous branch
of roots such that z(®) = Z, 2| < 1, and |z(w)| = o0 as |w| — oo. By continuity, we obtain the
existence of @ with z(@12) = €912, Hence, we have i@ > € o (A + Be'#12). Since & and
@y belong to disjoint intervals (—oo, &) and (&, +00), at least one of them is nonzero. O

Proof of Theorems 2 and 3. Firstly, we show that the conditions of Theorems 2 and 3 are equiv-
alent.

1. The conditions (A2.2) [almost Hurwitz S(®)] and (A1.2) [nonsingular S(0)] imply that
Ay is Hurwitz, i.e., (Al.1) [instantaneous stability] holds. Assume the opposite, i.e., Ag is not
Hurwitz.

When iwp € 0(Ap), Lemma 16 implies that one of the following two cases occur:

I. There exists w # 0 such that iw € o (S(®)) for some ®. This contradicts the condition
(A2.2) [almost Hurwitz S(®)].

II. wg =0and 0 € o (S(P)) forall & € T™. Substituting & = 0, we obtain 0 € ¢ (S(0)), which
contradicts the condition (A1.2) [nonsingular S(0)].

Now assume that o (Ag) does not contain purely imaginary eigenvalues. Since Ag is not Hur-
witz, we have A € 0 (A) with (1) > 0. Applying Lemma (18) sequentially, we obtain that there
is A € o (§(®)) with some ® with 91(A) > 0 and A £ 0. This contradicts to the condition (A2.2)
[almost Hurwitz S(®)].

We have shown that Ag is Hurwitz under the assumptions of Theorem 3. Let us show that
(A2.2) [almost Hurwitz S(®)] and (A1.3) [no resonance] are equivalent when Ag is Hurwitz.
Applying Lemma 15, one can see that cases I and III of Lemma 15 correspond to the condition
(A2.2) [almost Hurwitz S(®)] of Theorem 3. Moreover, the condition (A1.3) [no resonance] of
Theorem 2 excludes the case II of Lemma 15, hence, it is also equivalent to the case I or III of
Lemma 15. Hence, (A1.3) and (A2.2) are equivalent.

The following steps (ii)—(iii) prove that (A1.2) [nonsingular S(0)] and (A2.2) [almost Hurwitz
S(®)] are sufficient for the absolute stability.

2. First notice, that (A2.2) [almost Hurwitz S(®)] implies that S(0) is almost Hurwitz, i.e.,
S(0) is Hurwitz, except for a possible zero eigenvalue. However, zero eigenvalue is excluded by
the condition (A1.2) [nonsingular S(0)]. Hence, S(0) is Hurwitz.

The spectrum for 7y =0, k =1, ..., m coincides with the spectrum of S(0), which is Hurwitz.
Hence, all roots for 7y = 0 possess negative real parts. The same also holds for sufficiently small
delays, see e.g. [12].

3. Due to continuity of the roots A with respect to tx > 0, the only possible stability loss
for positive delays is through the crossing of the imaginary axis. Let us assume that A =iw™ at
some T = r,j‘ >0, k=1,...,m, and subsequently show that it leads to a contradiction. Indeed
A =iw* implies

iv* €o (S(dD*)) . g =—o't.

Due to (A2.2) [almost Hurwitz S(®)], it holds w™ = 0. However, in this case, 0 € o (S(0)), which
contradicts the assumption (A1.2) [nonsingular S(0)].
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Hence, for all positive delays, the roots cannot cross the imaginary axis and the asymptotic
stability holds, i.e. the conditions (A1.2) and (A2.2) imply the absolute stability.

The following steps (iv)-(vi) prove that (A1.1) [instantaneous stability], (A1.2) [nonsingular
S(0)], and (A1.3) [no resonance] are necessary conditions for the absolute stability. We choose
here the conditions (Al.1), (A1.2), (A1.3) from Theorem 2, since they are equivalent to (A1.2)
and (A2.2), and they are more convenient for the proof of necessity. Hence, we assume that
absolute stability holds and show (A1.1), (A1.2), and (A1.3).

(iv) Assume (Al.1) [instantaneous stability] does not hold, then there exists Ao € o (Ag) with
RN (Xo) >0.

If ;M (L) > 0, consider the case of large delays 1 = ¢~!. The corresponding characteristic
equation has the form

m
P, (1) = det [—,\1 +A0+ Y Ake—l/a} —0. (35)
k=1

Let U(19) C C be a sufficiently small open neighborhood of Ay such that it does not contain
other eigenvalues of Ag, and (U (19)) > 0. Then, the holomorphic function P, (1) converges
uniformly to det[—AI 4 Ag] for ¢ — 0 on U ()p). According to the Hurwitz theorem, the char-
acteristic equation (35) has an unstable root in A € U(}g) for all sufficiently small . This
contradicts to the absolute stability assumption and, hence, (A1.1) is a necessary condition.

If iwg € 0 (Ag), Lemma 16 implies that one of the two cases can occur:

l.ivneo (S(&))) with some @ # 0. In such a case, Lemma 17 implies that i® is a solution

of the characteristic equation for countable number of delays (27). We obtain the contradiction
to the absolute stability and, hence, (A1.1) is necessary.

2. wp=0and 0 € o (S(P)) for all ® € T™. In particular, it holds 0 € o (§(0)), which means
that A = 0 is an eigenvalue for arbitrary time-delays. This contradicts the absolute stability as-
sumption, hence, (A1.1) is necessary.

(v) The necessity of (A1.2) [nonsingular S(0)] is evident, since otherwise there exists a root
A =0 for all delays.

(vi) We show that (A1.3) [no resonance] is necessary. Assume the opposite, i.e., iwg €
o (S(®)), wg # 0 for some ®. Then, accordingly to Lemma 17, systems with time-delays (27)
possess the eigenvalues iwg. This contradicts the absolute stability and proves that (A1.3) is
necessary.

Finally, let us show the criterion for the absolute hyperbolicity from Theorem 2. We first
prove that (A1.2) [nonsingular S(0)] and (A1.3) [no resonance] imply absolute hyperbolicity.
Assume the opposite, so that there exists a solution A = iw of Eq. (2) for some time delays.
Then, if w = 0, then we obtain the contradiction to (A1.2); if w # 0, we obtain the contradiction
to (A1.3) with ¢y = —wtr. The backward statement “absolute hyperbolicity” = (A1.2) and
(A1.3) is also straightforward. Assuming that (A1.2) or (A1.3) does not hold, we obtain either
A=0o0r A =iw#0, respectively. O

7. Conclusions

The obtained conditions for absolute stability determine a class of linear DDEs, which are
asymptotically exponentially stable, independently on time-delays. Such class of systems can
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be useful for applications, where the robustness against time-delays is important. For nonlin-
ear systems, these conditions exclude the possibility of any bifurcations at the corresponding
equilibrium.

Bifurcations induced by varying time delay are also excluded in the case of absolute hyperbol-
icity. Linear systems that do not belong to one of these two classes have resonances, i.e. purely
imaginary eigenvalues, which occur for countably many resonant delay times in each delayed
argument, and are necessarily unstable for large delays. Note that such systems may or may not
become stable for certain ranges of small delays. Even systems with strong instabilities for large
delay may become stable for small delay, but only if they have unstable asymptotic continu-
ous spectrum. This counter-intuitive conclusion follows from absolute hyperbolicity, which we
showed for strongly unstable systems with stable asymptotic continuous spectrum.
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