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Abstract
We establish the existence of chimera states, simultaneously supporting syn-
chronous and asynchronous dynamics, in a network of two symmetrically
linked star subnetworks of identical oscillators with shear and Kuramoto–
Sakaguchi coupling. We show that the chimera states may be metastable or
asymptotically stable. If the intra-star coupling strength is of order ε, the
chimera states persist on time scales at least of order 1/ε in general, and on time-
scales at least of order 1/ε2 if the intra-star coupling is of Kuramoto–Sakaguchi
type. If the intra-star coupling configuration is sparse, the chimeras are asymp-
totically stable. The analysis relies on a combination of dimensional reduction
using a Möbius symmetry group and techniques from averaging theory and
normal hyperbolicity.
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1. Introduction

In 2002, Kuramoto and Battogtokh [15] observed the coexistence of spatiotemporal syn-
chronous and asynchronous oscillations in a ring of identical coupled oscillators. This
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phenomenon of partial synchronization in networks of identical coupled oscillators was sub-
sequently branded chimera and observed in a wide range of experimental settings, includ-
ing lasers [16], photoelectrochemical oscillators [9, 24] and coupled metronomes [17]. For
comprehensive reviews of the prolific occurrence of chimeras in physical and numerical
experiments, see [11, 21].

On the theoretical side, various mechanisms for the occurrence of chimeras have been pro-
posed [1, 19, 21, 29]. In the limit of infinitely many oscillators, a spectral theory for chimera
states was developed [20]. Notably, the understanding of chimera states in large but finite size
networks is more challenging [28]. Carefully designed coupling functions have been shown to
generate chimeras in finite size systems [3, 5]. Overall, despite a good two decades of fascina-
tion with chimeras, we remain far from a comprehensive mathematical understanding of their
occurrence and behavior.

The main objective of this paper is to obtain mathematical results on chimera behavior
in a large but finite size network of identical oscillators, with a specific modular structure
and a relatively general type of coupling. The example concerns the union of two identical,
symmetrically coupled star subnetworks. The key ingredients that underlie our analysis are
a dimensional reduction due to a Möbius group symmetry [27], averaging theory [22] and
normally hyperbolic invariant manifold theory [8, 10].

2. Model and discussion of main results

The network we consider is depicted in figure 1. It consists of two symmetrically coupled star
subnetworks labelled ‘+’ and ‘−’. Each star subnetwork consists of a central hub connected to
N leaves. The isolated dynamics of all nodes are described by identical phase oscillators, and
we denote hub states as ϕ±

0 ∈ S1 and leaf states as ϕ±
i ∈ S1, i = 1, . . . , N, where S1 ≃ R/2πZ,

with equations of motion

ϕ̇+
0 = ω + λ

N∑

j=1

H(ϕ+
j ,ϕ+

0 ),

ϕ̇+
i = ω + λH(ϕ+

0 ,ϕ+
i ) + ελch(ϕ−

i − ϕ+
i ),

(1)

and likewise for the ‘−’ star. Here, ω is the oscillator natural frequency and λ is the coupling
strength between hubs and leaves. The function H is the Kuramoto–Sakaguchi coupling

H(ϕ j,ϕi) = c + sin(ϕ j − ϕi + δ), (2)

where c ̸= 0 is the shear and δ ∈ (0, π/4) is the phase frustration. This coupling is related
to the phase reduction of an Andronov–Hopf bifurcation [14]. Note that shear parameter c
causes the frequency of the oscillators to depend on node degree. Moreover, h is a diffuse
pairwise coupling function between the two stars. The inter-coupling strength of the interaction
between the star motif components is represented by ε. Our parameterization of the inter-
coupling strength as ελc leads to simpler mathematical statements.

We express the level of synchrony in terms of complex order parameters

z+ =
1
N

N∑

j=1

ei(ϕ+
j −ϕ+

0 ) and z− =
1
N

N∑

j=1

ei(ϕ−
j −ϕ−

0 ), (3)

5345



Nonlinearity 34 (2021) 5344 J Eldering et al

Figure 1. Metastability of chimera states in symmetrically coupled star networks. In
the left part, two symmetrically coupled stars are depicted. In the right part, the time
series of order parameters r+ and r− for star subnetworks + and − are presented. The
upper right plot displays a chimera collapse to asynchrony. The lower right plot shows
a chimera that does not break after 104 cycles. We consider N = 200, h(ϕ∓

j − ϕ±
i ) =

sin(ϕ∓
j − ϕ±

j + δ), δ = 0.3, ω = 1 and λ = 1, where c is the shear parameter and ε the
intra-star coupling strength.

related to the average phase difference between corresponding phase oscillators in the two-star
motif subnetworks. We also consider

r+ := |z+| and r− := |z−|

the real order parameter of each subnetwork. Here, r = 1 refers to full synchrony and r = 0
represents full asynchrony when phases tend to be uniformly distributed.

Earlier observations of Ko and Ermentrout [12, 13], Vlasov et al [26] and Toenjes et al [23]
based on numerics and N →∞ approximation suggest that phase oscillators in star networks
exhibit coexisting synchronous and asynchronous states caused by shear. When ε = 0, each
star exhibits coexistence of a stable state in which all leaves are in synchrony and another
stable state in which the motion of the leaves is asynchronous.

We consider the dynamics of the coupled subnetworks (ε > 0) with shear parameter chosen
in the bi-stability regime of the isolated dynamics and initial conditions for each subnetwork
are chosen near the alternative stable states, so that the resulting dynamics in the absence of
coupling (ε = 0) would display a combination of synchronous and asynchronous dynamics. In
the presence of coupling (ε > 0), numerical experiments show that such states tend to persist
(to the limit of our simulation time, approximately 106 cycles of natural frequency) when the
coupling strength ε between the star motif is small, or collapse to a completely synchronized
or asynchronous state when this coupling strength is not so small. Representative examples
from our simulations are presented in figure 1.
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In this paper, we address the explanation of these observations for large N and small ε.
First, we prove that in the uncoupled limit (ε = 0), synchronous and asynchronous motion
coexist. The synchronous motion corresponds to the existence of an invariant normally hyper-
bolic manifold M+ and the asynchronous motion corresponds to the existence of an invariant
manifold normally hyperbolic with boundary M−. We prove (theorem 6.1) that the coupled
stars system has an invariant normally hyperbolic manifold Mε that is close to M+ × M−. The
chimera states persist for all time only if the trajectories of the system remain on Mε. However,
since Mε has a boundary ∂Mε the trajectories may drift along Mε and escape which may lead
to chimera breaking. We prove that existence of three classes of chimeras:

(Short metastability) Chimera states exist for a time O(ε−1),3 see theorem 6.2 (a).
(Long metastability) If the intra-star coupling is of Kuramoto–Sakaguchi type then chimera

states exist for a time O(ε−2), see theorem 6.2 (b).
(Stable) Chimera states, which persist for all time, exist if the intra-star coupling configu-

ration is sufficiently sparse, see theorem 6.4.
Our main results rely on estimates from normally hyperbolic invariant manifold and averag-

ing theory to obtain bounds on the drift on Mε. Before discussing the proofs of the main results
in more detail, in the next section we present numerical observations that have motivated the
theory developed in this paper.

3. Change of coordinates and parameterization

We first bring the equations to a suitable form for simulations and theory. To this end, we
perform the variable substitution ϕ j *→ ϕ̃ j :=ϕ j + ωt for all j = 0, . . . , N and a time rescal-
ing t *→ τ :=λct. This rescales equation (1) and turns the degree into the hub node’s natural
frequency

ϕ̇+
0 = N +

1
c

N∑

j=1

sin(ϕ+
j − ϕ+

0 + δ),

ϕ̇+
i = 1 +

1
c

sin(ϕ+
0 − ϕ+

i + δ) + εh(ϕ−
i − ϕ+

i ), i = 1, . . . , N,

(4)

where we abuse notation by re-using variables ϕ and denoting differentiation with respect to
τ by · again. Let us denote σ = 1/c. We also allow for a slight generalization, where β > 1
is the hub frequency. When β = N, we recover the previous equation (4). Here β works as a
frequency gap between hubs and leaves. So, for the + and − subnetworks the equations of
motion are

ϕ̇+
0 = β + β

σ

N

N∑

j=1

sin(ϕ+
j − ϕ+

0 + δ)

ϕ̇+
i = 1 + σ sin(ϕ+

0 − ϕ+
i + δ) + εh(ϕ−

i − ϕ+
i ), i = 1, . . . , N,

(5)

and the ones for the − star are similar with + and − sign swapped.

3 Here O(·) stands for Landau’s symbols for order functions. So, t = O (δ(ε)) is: there exists ε0 ! 0 and K ! 0 such
that 0 " t " K|δ(ε)| for 0 " ε " ε0.
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Figure 2. Synchronization diagram for a single star with N = 200 leaves. The parame-
ters are β = 10, δ = 0.3 and at each step the coupling strength was increased (decreased)
by ∆σ = 0.02. Dots are the values of the order parameter calculated numerically. Solid
lines are the theoretical predictions and the green solid line is the separatrix. The region
between the two vertical dashed lines is where both synchronous and asynchronous states
coexist.

4. Numerical observations

We begin by establishing the synchronisation diagram for a single star and then we proceed to
numerically explore chimera states in networks.

4.1. Collective dynamics of a single star network

We obtain the bifurcation diagram of the order parameter for a single star, see figure 2.

4.1.1. Numerical procedure. We integrate equations (5) of one star using an implicit
Runge–Kutta method of order five (we use a solver described in [2]). We start at σ = 0 with
uniformly randomly distributed initial phases in (0, 2π) and evaluate the order parameter r in
the stationary regime. Then we increase adiabatically the coupling by ∆σ = 0.02 and, using
the outcome of the last run as the initial condition, calculate the new value of the stationary
order parameter r at σ + ∆σ, repeating these steps until a maximal value σ is reached. This
curve is called the forward continuation. The order parameter increases slowly and smoothly
until σ = σf , where it jumps discontinuously to r = 1.

We obtain the backward continuation by decreasing adiabatically the coupling strength by
steps of size ∆σ from the synchronous state. We use the outcome of the last run and add a
small random uniform number drawn from the interval (0, 0.01) as the initial condition. In the
backward continuation, the order parameter drops abruptly to the asynchronous branch.

4.1.2. Main findings. In section 5, we prove the existence of this synchronization diagram via
the theory of invariant manifolds. In figure 2, the region between the dashed lines corresponds
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Figure 3. Chimera breaking to synchrony. We show the time series of order parameters
r+ and r− for the star subnetworks depicted in figure 1. After approximately 4.4 × 103

cycles of natural frequency the chimera collapses to synchrony. Parameter values are
N = 200, β = 10, σ = 2.0 and ε = 0.25.

to the values of the coupling critical couplings

σb =
β − 1

1 + β cos(2δ)
and σf =

β − 1√
1 + 2β cos(2δ)

.

The backward critical point σb is calculated in section 5.3, where we prove that it is a conse-
quence of requiring the existence and stability conditions for the synchronous state. We prove
in theorem 5.8 that, for a large set of initial condition, when σ < σb even when we initialize
the network in a neighborhood of the synchronization manifold the network will decay to an
asynchronous motion. In other words, the backward transition is discontinuous. The forward
critical value σf is calculated in section 5.4.

4.2. Symmetrically coupled stars

In figure 1, we presented examples of long metastable chimeras and chimeras breaking to
asynchrony. Here, we illustrate chimeras breaking to synchrony. The stars are coupled with
inter-coupling strength ε and coupling function

h(ϕ∓
j − ϕ±

i ) = sin(ϕ∓
j − ϕ±

i + δ), i, j ∈ {1, . . . N}.

Figure 3 shows that for N = 200, β = 10, σ = 2.0, and ε = 0.25, after 4400 cycles
the chimera breaks to synchrony. We note that the oscillatory behavior in the numerical
experiments is akin to the breathing chimera [1].

4.2.1. Chimera lifetime. The coupling strength between the stars provides the time scale the
chimera exists—either of order 1/ε (in the general inter-coupling function) or 1/ε2 (for sinu-
soidal). We performed numerical experiments to check these predictions. We introduce a
parameter ζ which splits the absolute value of the order parameter in theorem 6.1 measured
on the synchronous and the asynchronous star. The chimera lifetime τ is the minimum time it
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Figure 4. Chimera lifetime ⟨τ ⟩ as function of inter-coupling strength ε. Lifetime ⟨τ⟩,
represented by dotted lines, is an average over initial conditions chosen nearby M, while
the shaded area is the standard deviation—for each ε in the interval [0.001, 0.01] we
pick five initial conditions, while when ε is inside the interval [0.01, 0.5] we pick 50
initial conditions. The dashed line represent the scaling ε−2. The parameters are β =
200, σ = 1.2 and ζ = 0.25.

takes to violate the splitting condition from theorem 6.1, so when any of the next two conditions
is satisfied:

|z−(τ ) − z−(0)| > ζ or r+(τ ) < 1 − ζ.

The lifetime depends on the initial conditions and parameters of the network. We select
initial conditions starting in a neighborhood of M.4 And for each value of ε, we compute τ for
different initial conditions and then compute the average lifetime ⟨τ ⟩. Figure 4 shows ⟨τ ⟩ as a
function of ε which appears to agree with our prediction for moderate values of ε.

4.3. Coupled scale-free networks

Scale-free networks display power-law degree distribution P(k) ∝ k−γ , where k denotes the
degree and P the corresponding number of nodes with that given degree k. Hubs in such scale-
free networks are dominant and for large values of γ, star motifs are building blocks for scale-
free networks [4]. Although our results for star graphs do not apply to the scale-free network,
we can use them as heuristics to build chimera-like states in scale-free networks. Consider the
following equations of motion on complex networks,

ϕ̇i = ki + σ
N∑

j=1

Ai j sin
(
ϕ j − ϕi + δ

)
, i = 1, . . . , N, (6)

4 We select initial conditions satisfying the restrictions for system be in M and we add a small random uniform vector
with each coordinate drawn from the interval (0, 0.01).
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Figure 5. Synchronization diagram for a Barabási–Albert network. We fix N = 1000
and ⟨k⟩ = 6. For δ = 0.03, at each step we increase the coupling strength (and decreased
respectively) by ∆σ = 0.02. We observe for σ ∈ [1.3, 1.5] is a region of coexistence of
synchronous and asynchronous states.

where σ is the coupling strength, ki is the degree of the vertex i and Ai j is the adjacency matrix.
Ai j is equal to 1 if i = j and 0 otherwise. The synchronization diagram for a Barabási–Albert
[4] network with N = 1000 and mean degree ⟨k⟩ = 6 is shown in figure 5.5

We generate two identical Barabási–Albert networks. The kth vertex of one network is
coupled to (and only to) to the kth vertex of the other network. The coupling function used
is the Kuramoto–Sakaguchi coupling. Again σ denotes the intra-coupling strength and the
ε inter-coupling. We chose initial conditions inside the hysteresis loop in figure 5, starting
one network in the synchronous and the other in the asynchronous branch. Figure 6 shows
chimera-like states in the two coupled Barabási–Albert networks.

4.3.1. Chimera lifetime. We repeat the same procedure as for the coupled stars to quantify the
chimera lifetime to the two identical coupled BA networks case. For a fixed initial condition,
we compute the chimera lifetime τ for different values of ε. Figure 7 displays a qualitative
scaling of the chimera lifetime with respect to the inter-coupling strength ε.

5. Mathematical analysis

In the remainder of this manuscript we prove our main results theorems 6.1–6.4. To this end
we present the strategy to prove the main theorems.

5.1. Strategy

First step: constructing the synchronous manifold of a single star. There exists an invariant
manifold where all phases are locked. In section 5.3 we prove that for certain intervals of the
parameters the manifold is normally attracting, see proposition 5.4.

5 For all simulations involving the BA networks, we integrate the equations using an explicit Runge–Kutta method of
order four.
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Figure 6. Chimeras in two identical coupled Barabási–Albert networks. Order param-
eters r+ and r− for two networks with N = 1000 and ⟨k⟩ = 6. Left panel shows a
metastable chimera. In right panel, the chimera quickly breaks to synchrony. We indicate
the intra-coupling strength σ and inter-coupling strength ε.

Figure 7. Chimera lifetime τ for two identical coupled BA networks. Dots correspond to
chimera lifetime τ with respect to the inter-coupling ε for a fixed initial condition chosen
near uniformly distributed phases for the asynchronous network and near synchroniza-
tion for the other network. Dashed lines represent the scaling ε−2. The parameters are
N = 1000, ⟨k⟩ = 6, σ = 1.4 and ζ = 0.35.

Second step: constructing the asynchronous manifold of a single star.

(a) Reduction in terms of Möbius actions: we rewrite the model in terms of relative phases. In
these coordinates, the dynamics is described in a low-dimensional manner by the action
of a three-parameter Möbius group, see section 5.4.1. The Watanabe–Strogatz approach
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provides a differential equation for the parameters of the Möbius groupα ∈ C and ψ ∈ S1

keeping invariant a set of constants of motion.
(b) Construct open sets of initial conditions such that the order parameter z is Ck close to α,

see section 5.4.2 in lemma 5.6. The differential equation for α depends on z and by a small
perturbation we obtain an equation solely in terms of α, see section 5.4.3 in theorem 5.7.
By averaging theory, in section 5.4.4, we prove that the perturbed dynamics of α enters in
finite time a neighborhood of zero, see theorem 5.8. This determines that the bifurcation
diagram of a single star network is in fact discontinuous for sufficiently small coupling
strength.

(c) By persistence of hyperbolic manifolds we obtain the invariant manifold corresponding
to the asynchronous dynamics in the full equations, see proposition 5.9.

Third step: constructing chimeras in coupled stars. We obtain the existence of chimera states
in the couple stars, see theorem 6.1, as a consequence of persistence of a product manifold for
ε = 0. We show three distinct results about the time scale these chimera states exist depending
on how generic we couple both stars.

Short metastability. We estimate an upper bound for how long it takes the perturbed
dynamics of the constants of motion drift out the invariant manifold.

Long metastability. We assume the coupling function between both stars has sinusoidal
form as an extra assumption. This implies the coupling term can be split up into two terms and
restricted to the invariant manifold. This restriction introduces an effective coupling term of
order ε2 to the constants of motion dynamics.

Stability of sparse one-to-one coupling. We show that coupling a single leaf may generate
a drift of the conserved quantities, but this will happen only for a single constant. That is, the
drift does not cascade to other leaves. Hence, if only a small fraction of leaves are coupled this
drift is immaterial and the order parameter will stay in a neighborhood of α and the chimera
state is stable, see theorem 6.4.

Those estimates are valid while the coupled stars remain in the perturbed product manifold
with boundary. If the constants of motion of the Watanabe–Strogatz approach drift out of the
boundary of the asynchronous manifold, we lose control over the dynamics because the order
parameter may no longer be in a neighborhood of α.

5.2. Preliminaries on invariant manifolds

We briefly recall some established results from the theory of normally hyperbolic invariant
manifolds [7, 8, 10]. Such manifolds can be viewed as generalizations of hyperbolic fixed
points and we use their property that they persist under small perturbations of the dynamics. We
consider normally attracting invariant manifolds (NAIMs), i.e. those which only have stable
normal directions, not unstable ones.

Let ẋ = f (x) with x ∈ Rn define a dynamical system; we use Rn for simplicity, but it can
be replaced by a smooth manifold. A submanifold M ⊂ Rn is said to be a NAIM for f if it is
invariant under the flow Φt of f and furthermore the linearized flow along M contracts normal
directions, and does so more strongly than it contracts directions tangent to M. Our precise
definition below corresponds to that of ‘eventual absolute normal hyperbolicity’ according
to [10].

Definition 5.1 (Normally attracting invariant manifold). Let ẋ = f (x) with x ∈ Rn

and f ∈ C1 describe a dynamical system with flow Φ : R × Rn → Rn. Then a submanifold
M ⊂ Rn is called a NAIM of f if all the following conditions hold true:
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(a) M is invariant, i.e. ∀ t ∈ R : Φt(M) = M;
(b) There exists a continuous splitting

TMRn = TM ⊕ N (7)

of the tangent bundle TRn over M into the tangent and a (stable) normal bundle, with
continuous projections πM , πN and this splitting is invariant under the tangent flow
TΦt = TΦt

M ⊕ TΦt
N ;

(c) There exist real numbers a < b " 0 and C > 0 such that the following exponential growth
conditions hold on the subbundles:

∀ t " 0, (m, v) ∈ TM : ∥TΦt
M(m) v∥ " C eb t ∥v∥,

∀ t ! 0, (m, v) ∈ N : ∥TΦt
N(m) v∥ " C ea t ∥v∥.

Note that if we have two dynamical systems f 1, f 2 which each have an NAIM M1, M2

respectively and max(a1, a2) < min(b1, b2), then M1 × M2 is an NAIM for the product system.
In our case, the dynamics on the invariant manifolds will be (close to) neutral, so b1,2 ≈ 0 and
hence the product system has an NAIM too.

A main result on normal hyperbolicity is that NAIMs persist under small perturbations of the
vector field f . That is, we have the following theorem, see [8, theorem 1] or [10, theorem 4.1].

Theorem 5.2 (Persistence of NAIMs). Let M ⊂ Rn be a compact NAIM for f. Then there
exists an ε > 0 such that for any vector field f̃ with ∥ f̃ − f ∥C1 " ε, there exists a unique

manifold M̃ that is diffeomorphic and O
(
∥ f̃ − f ∥C1

)
-close to M and invariant under f̃ .

Furthermore, M̃ is an NAIM for f̃ .

The closeness of M̃ to M can in general be expressed as follows: M̃ can be described by the
graph of a section of the normal bundle of M, and this section is C1-small. In our case M can
explicitly be given by the graph of a function, hence M̃ will be given by the graph of a C1-small
perturbation of this function.

In our case the NAIM M will have a boundary.Theorem 5.2 still holds true as long as the vec-
tor field f is pointing strictly outward at the boundary ∂M (also called ‘overflowing invariant’),
see [8]. In our case M will not be overflowing invariant. This can be overcome by artificially
modifying f near the boundary ∂M. A slightly simpler approach uses [7, theorem 4.8]: we mod-
ify f such that it preserves a manifold S that transversely intersects M with S ∩ M = ∂M. For
example, S could be the local normal bundle of M restricted to ∂M.

5.3. An NAIM for the synchronous state

The synchronous state is characterized by r = 1 and the phase locking manifold

Mφ = {φ1 = · · · = φN = φ ∈ S1,φ− ϕ0 = ∆φ ∈ S1} ⊂ TN+1

satisfies this condition on the order parameter. The stability of Mφ depends on the frequency
mismatch, the phase frustration δ and intra-coupling strength σ [25]. The following hypothesis
is necessary to prove existence of the synchronous manifold in proposition 5.4.

Hypothesis 5.3. Assume that

σ > σb :=
β − 1

1 + β cos(2δ)
and arg(v) − sin−1

(
1 − β

σ∥v∥

)
∈
(
−π

2
,
π

2

)
, (8)
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where v = (β sin(2δ), 1 + β cos(2δ)) ∈ R2, and hence ∥v∥ =
√

1 + β2 + 2β cos(2δ). Here
arg(v) is the angle of v, as under the identification R2 ∼= C.

Proposition 5.4. Let σ > 0, β > 1 and δ ∈ (0, π
4 ). The synchronized state

MC = {φ1 = · · · = φN = φC ∈ S1 } (9)

is a NAIM for the dynamics (14) if and only if hypothesis 5.3 holds and when φC is given by

φC = δ − π + arctan
(

1 + β cos(2δ)
β sin(2δ)

)
+ arccos

(
β − 1
σ∥v∥

)
. (10)

Proof. First we search for the value of φ = φC such that MC is an invariant manifold.
Evaluating (14) on MC we see that this amounts to

φ̇ = 1 − β − σ sin(φC − δ) − βσ sin(φC + δ) = 0.

This can be rewritten as

⟨v
(
cos(φC − δ), sin(φC − δ)

)
⟩ = −β − 1

σ
(11)

with v = (β sin (2δ), 1 + β cos (2δ)). Hence we have solutions if

∥v∥ =
√

1 + β2 + 2β cos(2δ) ! β − 1
σ

. (12)

To evaluate stability of MC, let (φ̇1, . . . , φ̇N , ϕ̇0) = F(φ1, . . . ,φN ,ϕ0) denote the system (14).
Then we have the total derivative

DF|MC = −σ cos(φC − δ)

⎛

⎜⎜⎜⎝

1 ∅
. . .

1
∅ 0

⎞

⎟⎟⎟⎠

− σ
β

N
cos(φC + δ)

⎛

⎜⎜⎜⎝

1 · · · 1 0
...

. . . ...
...

1 · · · 1 0
−1 · · · −1 0

⎞

⎟⎟⎟⎠
.

Thus, we find that (0, . . . , 0, 1) is an eigenvector with eigenvalue 0, that is, the direction along
MC is neutral. In the directions transversal to MC we have the eigenvector

v1 =

(
1, . . . , 1,− β cos(φC + δ)

cos(φC − δ) + β cos(φC + δ)

)

with eigenvalue λ1 = −σ
[
cos(φC − δ) + β cos(φC + δ)

]
and N − 1 independent eigenvec-

tors vi = (0, . . . , 1,−1, 0, . . . , 0) with eigenvalue λ2 = −σ cos(φC − δ). So MC is normally
attracting if σ > 0 and

cos(φC − δ) > 0 and cos(φC − δ) + β cos(φC + δ) > 0.
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Figure 8. Geometric representation of the existence and stability of the synchronized
state. Dots indicate the fixed points for φC ∈ S1 and the red arc is the unstable region
where at least one condition in (13) is violated. The vectors v and w and the dashed lines
are perpendicular.

These conditions can be rewritten as

cos(φC − δ) > 0 and ⟨w
(
cos(φC − δ), sin(φC − δ)

)
⟩ > 0, (13)

with w = (1 + β cos (2δ),−β sin (2δ)) equal to v rotated clockwise over 90 degrees. Interpret-
ing the conditions (11) and (13) geometrically with φC ∈ S1, see figure 8, we see that there are
at most two synchronized states. Since v⊥w, precisely one of these states satisfies the second
stability condition of (13) if and only if (12) holds as a strict inequality. Then that state MC is
actually stable if cos(φC − δ) > 0 also holds, which can be expressed as the second condition
in (8) and solving for φC yields (10).

The backward critical coupling σb is obtained by solving the equation cos(φC − δ) = 0 and
using the expression obtained forφC. This yields the first condition in (8). Thus both conditions
in hypothesis 5.3 are necessary and by construction also sufficient to guarantee that MC is an
NAIM. #

5.4. An NAIM for the asynchronous state

Consider a single star network in system (5). We change to a new set of coordinates defined
by φk = ϕk − ϕ0, measuring the phase difference between the leaves and the hub, and the
resulting equations are

φ̇i = 1 − β − σ sin(φi − δ) − β
σ

N

N∑

j=1

sin(φ j + δ), i = 1, . . . , N,

ϕ̇0 = β + β
σ

N

N∑

j=1

sin(φ j + δ).

(14)
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In the original coordinates the system had a global S1-symmetry by which we have effectively
reduced the system, since the equations for the relative angles φi are now decoupled from ϕ0.

To find a stable asynchronous state, we change the equations for a single star from relative
phase form (14) to new variables introduced by Watanabe–Strogatz [27].

5.4.1. Low-dimension description. Watanabe and Strogatz [27] showed that a class of systems
of N identical coupled oscillators can be described by a set of three ODEs. They achieved this
through a change of variables, that explicitly shows that the system possesses N − 3 constants
of motion. In [18] Marvel, Strogatz and Mirollo provided an explanation in terms of Möbius
actions. We follow [18] and consider systems of N identical coupled phase oscillators with
equations of motion that can be put into the form

φ̇ j = f eiφ j + g + f̄ e−iφ j . (15)

Here f is a smooth complex-valued function of the phasesφ1,φ2, . . . ,φN ∈ S1, f̄ is its complex
conjugate, and g is a real-valued function of the phases φ1,φ2, . . . ,φN ∈ S1. The phases φ j
evolve in time according to the action of the Möbius group G,6

eiφ j(t) = Gα(t),ψ(t)(eiθ j), (16)

where θ j are a set of constant (time independent) angles, and we use the group parameterization
Gα,ψ and its action on w ∈ C given by

Gα,ψ(w) =
α + eiψ w

1 + ᾱ eiψw
, (17)

with ψ ∈ S1 and α ∈ D = {z ∈ C||z| < 1}.
The time evolution of the phases in (16) satisfies the equations (15) as long as α(t) and ψ(t)

are solutions of the differential equations

α̇ = i
(

f α2 + gα + f̄
)

,

ψ̇ = f α + g + f̄ ᾱ.
(18)

The functions f and g still implicitly depend on φ1,φ2, . . . ,φN ∈ S1, so we have to use (16) to
express the φ j’s in terms of α,ψ, and the θ j’s and obtain a closed system of equations for α,ψ.
For suitable models, we can express f and g in terms of the order parameter z, i.e. f = f (z, z̄)
and g = g(z, z̄), where z is given by

z(α,ψ, θ) :=
1
N

N∑

j=1

eiφ j =
1
N

N∑

j=1

Gα,ψ
(
eiθ j

)
. (19)

We now reformulate the Watanabe–Strogatz change of variables in a more formal geomet-
ric setting. Let φ̇ = X(φ) with X ∈ X(TN) denote the vector field of (15) and let (α̇, ψ̇, θ̇) =
X̂(α,ψ, θ) with X̂ ∈ X(Q) denote the vector field associated to the Watanabe–Strogatz coordi-
nates (α,ψ, θ) ∈ Q := D × S1 × TN , i.e. we have θ̇ = 0 and α̇, ψ̇ given by (18). Let Φt and Φ̂t

6 The complete Möbius group consists of all fractional linear transformations G(w) = aw+b
cw+d of the complex plane such

that ad − bc ̸= 0 but we only consider the subgroup that preserves the unit circle. As in related literature we refer to
this subgroup as the Möbius group.
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denote the associated flows. Then we have the commuting diagram

(20)

where π : Q → TN is the submersion φ = π(α,ψ, θ) defined by (16). Since π(α,ψ, · ) : TN →
TN is given by the diagonal action of Gα,ψ , it is a diffeomorphism and henceπ indeed a submer-
sion. Note that although we loosely speak of π as a coordinate transformation, strictly speaking
it is not, since it is not injective. The diagram (20) implies that Tπ ◦ X̂ = X ◦ π and hence
X = Tπ ◦ X̂ ◦ π−1 for any right-inverse π−1. On the other hand, a vector field Y ∈ X(TN) can
be lifted to a vector field Ŷ = R ◦ X ◦ π ∈ X(Q) satisfying (20), given a choice of a right-inverse
R of Tπ. We now choose

R(α,ψ, θ) = Tθ

[
π(α,ψ, · )−1] : TφTN → TθTN ⊂ T(α,ψ,θ)Q (21)

with φ = π(α,ψ, θ). Let G
′
α,ψ denote the derivative of the action on S1, then we have

R(α,ψ, θ) = diag
(
G′

α,ψ(θ1)−1, . . . , G′
α,ψ(θN)−1) . (22)

The upshot is that if we perturb the original vector field X to X + εY , for example when intro-
ducing a coupling between the stars, then we can lift Y to Ŷ ∈ X(Q) such that Ŷ is given by

α̇ = 0, ψ̇ = 0, θ̇ j = G′
α,ψ(θ j)−1Y j(π(α,ψ, θ)). (23)

In the case that only some of the components Y j are nonzero, it follows that only the associated
θ j’s are not conserved anymore by Ŷ, while the other θ j’s are still conserved.

On the other hand, we still lift the original vector field X using the Watanabe–Strogatz
approach, such that its lift X̂ ∈ X(Q) is given by (18) together with θ̇ = 0.

5.4.2. Approximation of the complex order parameter. We write the sine functions in (14) in
exponential form. This shows that we can recast the equations in the Watanabe–Strogatz form
(15) with f and g given by

f (z, z̄) =
−σ e−iδ

2i
,

g(z, z̄) = 1 − β − σβ

(
z eiδ − z̄ e−iδ

2i

)
.

(24)

For a more detailed analysis of a stable asynchronous state in the system, we use that z ≈ α
when the θ’s are close to being uniformly distributed on S1 (called ‘splay states’), when the
number of leaves N is sufficiently large. Let us make this more precise.

Definition 5.5. We say that θ ∈ TN is uniformly distributed if there exists a ϕ ∈ S1 such
that θ j = 2π j

N + ϕ up to permutation. We denote the set of all such θ by Θ.

Lemma 5.6. Fix 0 < r < 1 and consider the disc Dr = {α ∈ C||α| < r}. For each k ! 1
and ε > 0 there exists for all N sufficiently large an open neighborhood U of Θ ⊂ TN such

5358



Nonlinearity 34 (2021) 5344 J Eldering et al

that the map Dr → C, α *→ z(α,ψ, θ) − α, with z(α,ψ, θ) given by (19), is smaller than ε in
Ck-norm, uniformly for all (ψ, θ) ∈ S1 × U.

Proof. Consider an element θ ∈ Θ and wlog. Assume that it is of the form as in definition
5.5 without permutation of the indices j and that these run from 0 to N − 1.

Below, we use the geometric series expansion (1 + x)−1 =
∑

l!0(−x)l with x = ᾱ eiψ eiθ j ,
which converges for any |α| < 1. We find

z(α,ψ, θ) =
1
N

N−1∑

j=0

α + eiψ eiθ j

1 + ᾱ eiψ eiθ j

=
1
N

N−1∑

j=0

α

(
1 + α−1 ei

(
2π j
N +ϕ+ψ

))∑

l!0

(
−ᾱ ei

(
2π j
N +ϕ+ψ

))l

= α
1
N

N−1∑

j=0

(
1 + α−1 ei

(
2π j
N +ϕ+ψ

))(
N−2∑

l=0

(−ᾱ)l ei
(

2π jl
N +l(ϕ+ψ)

)

+ RN−2, j(α)

)

= α
1
N

N−2∑

l=0

N−1∑

j=0

[
(−ᾱ)l ei

(
2π jl

N +l(ϕ+ψ)
)

+
(−ᾱ)l

α
ei
(

2π j(l+1)
N +(l+1)(ϕ+ψ)

)]

+
α

N

N−1∑

j=0

(
1 + α−1 ei

(
2π j
N +ϕ+ψ

))
RN−2, j(α)

= α
1
N

N−2∑

l=0

δl,0

N−1∑

j=0

(−ᾱ)l ei
(

2π jl
N +l(ϕ+ψ)

)

+
α

N

N−1∑

j=0

(
1 + α−1 ei

(
2π j
N +ϕ+ψ

))
RN−2, j(α)

= α +
1
N

N−1∑

j=0

(
α + ei

(
2π j
N +ϕ+ψ

))
RN−2, j(α).

To obtain the stated result we have to bound the second term in Ck-norm. We have

RN−2, j(α) =
∑

l!N−1

(
−ᾱ ei

(
2π j
N +ϕ+ψ

))l

= (−ᾱ)N−1
∑

l!0

(−ᾱ)l
(

ei
(

2π j
N +ϕ+ψ

))l+N−1

and note that the sum still defines a function with radius of convergence one, so this func-
tion and its derivatives up to order k are uniformly bounded for α ∈ Dr by some number
Bk > 0, hence ∥RN−2, j∥Ck " krN−1Bk. Since the function F j(α) = α + ei( 2π j

N +ϕ+ψ) multiplying
RN−2(α) has C1-norm bounded by 2 + r and all higher derivatives zero, we find
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∥∥∥∥∥∥
1
N

N−1∑

j=0

F j · RN−2, j

∥∥∥∥∥∥
Ck

" max
j∈[0,N−1]

k∑

m=0

(
∥F j∥C0∥RN−2, j∥Ck + m∥F j∥C1∥RN−2, j∥Ck−1

)

"
(

k +
k(k + 1)

2

)
max

j∈[0,N−1]
∥RN−2, j∥Ck

" k2(k + 3)
2

(2 + r)rN−1Bk.

Thus, for fixed r < 1 and k ! 1 and given ε > 0, we see that there exists an N0 > 0 such that
for all N ! N0

∥α *→ z(α,ψ, θ) − α∥Ck <
ε

2
on Dr × S1 ×Θ.

Next, since this function is C∞ (and actually analytic w.r.t.α, ᾱ,ψ, θ) it follows that there exists
an open neighborhood U ⊃ Θ such that

∥α *→ z(α,ψ, θ) − α∥Ck < ε on Dr × S1 × U,

which completes the proof. #

5.4.3. Asynchronous equilibrium in the closed system. The Watanabe–Strogatz equations
with functions f , g given by (24) depend on α,ψ (and θ as constant of motion) through the
function z(α,ψ, θ) in (19). This makes it difficult to find fixed points and analyze their stabil-
ity. Our approach is to first make the assumption that z = α, thereby ‘closing the equation’ to
a simple form. Secondly, after we find a stable fixed point, we use lemma 5.6 to prove that it
persists after reinserting the original function z(α,ψ, θ).

Let us therefore start analyzing the equations (18) with f and g given by (24) but z replaced
byα. In this case the system reduces to a skew-product flow; the equation for α does not depend
on ψ anymore and becomes

α̇ = −σ

2

(
e−iδ + β eiδ)α2 + i(1 − β)α +

σ

2

(
β|α|2 e−iδ + eiδ) . (25)

with 0 < δ < π/4. The next proposition characterizes the asynchronous branch.

Theorem 5.7. Let

0 < σ < σf :=
β − 1√

1 + 2β cos(2δ)
. (26)

Then equation (25) has an exponentially attracting fixed point αasync given by

|αasync| =
β − 1 −

√
(β − 1)2 − σ2(1 + 2β cos(2δ))
σ(1 + 2β cos(2δ))

and arg(αasync) = −π

2
+ δ.

(27)

Moreover, αasync is the unique branch of fixed points satisfying limσ→0αasync = 0.
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Proof. Representing equation (25) in polar coordinates, α = reiη , we obtain

ṙ =
σ

2
(1 − r2) cos(η − δ), (28a)

η̇ = 1 − β − σβr sin(η + δ) − σ

2
1 + r2

r
sin(η − δ). (28b)

Because of the product structure of equation (28a), we readily see that fixed points correspond
to either r = 1 or cos(η − δ) = 0. Since we are looking for the branchαasync of fixed points that
converge to zero as σ → 0, we discard the solution r = 1. Hence we substitute cos(η − δ) = 0
and sin(η − δ) = ±1 in equation (28b) and obtain the condition

±(β − 1) + σβr cos(2δ) +
σ

2
1 + r2

r
= 0.

Solving for r, we note that sin(η − δ) = 1 leads to negative solutions, so we find that η =
−π/2 + δ and

r± =
(β − 1) ±

√
(β − 1)2 − σ2(1 + 2β cos(2δ))
σ(1 + 2β cos(2δ))

. (29)

These fixed points exist for

σ < σf =
(β − 1)√

1 + 2β cos(2δ)
,

where the square root is well-defined since δ ∈ (0, π
4 ). The branch r− uniquely satisfies the

condition that it converges to zero as σ → 0.
Next we analyze its stability. Evaluating the Jacobian matrix of the system (28) at the fixed

point we obtain

J
(

r−,−π

2
+ δ

)
=

(
0

σ

2
(1 − r2

−)

a −βσr− sin(2δ)

)
with =

σ

2

[
1 + 2β cos(2δ) − 1

r2
−

]
. (30)

Considering (29) and interpreting (β − 1) and σ
√

1 + 2β cos(2δ) as the sides of a triangle, we
apply a triangle inequality estimate and conclude that

1 + 2β cos(2δ) <
1
r2
−

.

Therefore, it follows that for δ ∈ (0, π
4 ) and σ > 0 we have a < 0 and

tr(J) < 0 and det(J) > 0,

hence both eigenvalues of J have negative real part, which completes the proof. #

5.4.4. Below backward critical coupling. We are interested in the large β regime. In this case,
σb → 1 as β →∞. The Jacobian eigenvalues at the asynchronous state αasync are complex
and their imaginary part is proportional to β whereas their real parts converge to a constant
depending on δ and σ. As a consequence, near the fixed point solutions spiral towards the
fixed point with high frequency. We can also construct a Lyapunov function near αasync but
its domain is rather small. This shows that the nonlinear picture for |α| ≈ 0 is slightly more
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intricate. To better handle the dynamics of α we average out the fast oscillatory behavior and
analyze the averaged system.

Theorem 5.8. Let z be the order parameter of the system (19) corresponding to initial
conditions in an open neighborhood U ofΘ ⊂ TN. Given δ0 ∈ (0, 1), 0 < δ < π/4, 0 < σ < 1
and ε > 0 small enough, there exist N0 ∈ N and β0 > 0 such that for all N > N0, β > β0, and
z(0) ∈ Dδ0 there is T0 > 0 such that

|z(t) − αasync| " ε, for all t > T0.

The proof of this theorem is presented in appendix A. Roughly speaking, it means that if
we follow the synchronized manifold MC decreasing slowly the intra-coupling strength once it
looses stability the order parameter will drop and stay near zero. Thus, only the asynchronous
branch is stable for 0 < σ < 1 and large β.

5.4.5. Asynchronous invariant manifold. The final step is to construct the invariant manifold
relative to the asynchronous dynamics. To this end we use a persistence argument over the
equation of α and ψ.

Proposition 5.9. Let σ strictly satisfy inequality (26). Given ε > 0 there exists N0 such
that for each N ! N0 there exists a NAIM with invariant boundary, Masync, such that the order
parameter z on Masync satisfies

|z − αasync| " ε,

where αasync is given by (27).

Proof. To construct the asynchronous invariant manifold, we change to coordinates α,ψ
using the Watanabe–Strogatz approach section 5.4.1 while viewing the θi’s as fixed parame-
ters. First consider the modified system (18) with α as argument of the functions f , g. Then
the equation for α decouples and we find a stable fixed point αasync ∈ C, with |αasync| < 1
and explicitly given by (27). Since the dynamics for ψ is neutral, it follows that MWS =
{α = αasync, ψ ∈ S1} ⊂ D × S1 is an NAIM. Lemma 5.6 shows that given a k ! 1 and a ball
Br(αasync) ⊂ D, there exists an N0 and for all N ! N0 a neighborhood U ⊂ TN of the uniformly
distributed states Θ, such that the substitution of α by z(α,ψ, θ) is a Ck-small perturbation of
equation (18).

We choose k = 1 and by persistence of NAIMs, see [8, 10], the original system with the
true dynamics for z also has an NAIM

M̃WS(θ) = {α = αasync + gasync(ψ, θ), ψ ∈ S1} ⊂ D × S1 (31)

C1-close to MWS. Thus, since U is precompact, we have uniformly for all θ ∈ U that
∥gasync∥C1 " ε when N0 is sufficiently large, and thus on M̃WS(θ) also |z − αasync| " ε holds.
Now we consider θ ∈ TN as dynamical variables again; that is, we lift the system according to
(20) to coordinates (α,ψ, θ). Since the θi’s have no dynamics, also

Masync =
⋃

θ∈U

M̃WS(θ) × {θ} ⊂ D × S1 × TN (32)
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is an NAIM, but with boundary7. Since θ has no associated dynamics, the boundary is
invariant. #

6. Statement and proof of the main theorems

In this section, we state and prove the main result of this paper 6.2. First we must recapitulate
the results we obtained in section 5.

Consider two star networks with a large number of leaves N. The first star we assume to be
in a synchronous state (labeled + and whose coordinates are labeled using +) while the sec-
ond network we assume to be in an asynchronous state (labeled − and whose coordinates are
labeled using −). Both the synchronous and asynchronous states correspond to normally attract-
ing invariant submanifolds of each star network, i.e., in terms of the objects we introduced so
far:

• The + star is in the synchronous invariant manifold given by M+ = MC in φ+
i ,ϕ+

0
coordinates with i = 1, . . . , N, where MC is defined in (9).

• The − star is in the asynchronous invariant manifold given by M− = Masync in
ϕ−

0 ,α,ψ, θ ∈ Q− := S1 × D × S1 × TN coordinates, where Masync is defined in (32).

Note that the product system has M = M+ × M− as NAIM. Moreover, the order parameters
z+M : TN+1 → C and z−M : Q− → C are understood as the restriction on M and this is extended
when we couple the two stars with intra-couplingε guaranteeing the existence of chimera states
as presented in theorem 6.1.

Theorem 6.1 (NAIM for weakly coupled stars). Consider the coupled star network
system (5). For any h ∈ C1 and ζ > 0, there exist ε0 > 0, δ0 ∈ (0, π/4), N0 > 0, β0 > 0 and
an open set I ⊂ R such that for any N > N0, δ ∈ (0, δ0), β > β0 and 0 < ε " ε0, σ ∈ I the
system has a NAIM with boundary Mε that is O(ε)-close to M = M+ × M− ⊂ TN+1 × Q−

such that

r+
Mε

(ϕ+
0 ,φ+

1 , . . . ,φ+
N ) > 1 − ζ and r−Mε

(α,ψ, θ,ϕ−
0 ) < ζ.

The choice of coupling function h between each star affects the order of time these chimera
states exist. So, we split the results in theorems 6.2 and 6.4.

Note that N0 enters the proof through lemma 5.6, which was used to conclude that the
asynchronous manifold M− is an NAIM.

Theorem 6.2 (At least metastable chimera states).

(a) [General coupling] If h ∈ C1 in theorem 6.1 is arbitrary, there exists an open set U ⊂
T2(N+1) of initial conditions θ ∈ U on Mε such that the coupled dynamics stays in Mε for
a time of order 1/ε, uniformly for θ ∈ U. In other words, chimera states surely exist for
a time of order 1/ε.

(b) [Kuramoto–Sakaguchi coupling] In particular, if the coupling h ∈ C∞ is of the form

h(φ1,φ2) = c1 sin(φ1 − φ2 + δ).

Then there exists an open set U ⊂ T2(N+1) of initial conditions θ ∈ U on Mε such that the
coupled dynamics stays in Mε for a time of order 1/ε2, uniformly for θ ∈ U.

7 Here we mean the topological boundary, that is, ∂Masync = Masync\Masync.
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If extra information on the coupling is given or the coupling structure is not fully symmetric,
then the chimeras can be asymptotically stable. This motivates us to highlight and discuss how
general is our results:

Remark 6.3. Let A ∈ RN+1×N+1 be the adjacency matrix corresponding to the intercoupling
between both stars. In a general flavor the networks dynamics we analyze is given as

ϕ̇+
0 = β + β

σ

N

N∑

j=1

sin(ϕ+
j − ϕ+

0 + δ) + ε
N∑

j=0

A0 j h(ϕ+
0 − ϕ−

j ),

ϕ̇+
i = 1 + σ sin(ϕ+

0 − ϕ+
i + δ) + ε

N∑

j=0

Ai j h(ϕ+
i − ϕ−

j ), i = 1, . . . , N,

(33)

and likewise for the ‘−’ star. Both previous theorems, theorems 6.1 and 6.2-(a), are
extended to this general coupling structure between stars without any extra condition, since
the persistence argument goes through.

In the case of a small number of connections between both stars, we obtain

Theorem 6.4 (Stable chimera states). Consider the coupled star network system (33).
For any h ∈ C1 and ζ > 0 there exists ε0 > 0, δ0 ∈ (0, π/4), N0 > 0, β0 > 0 and an open set
I ⊂ R such that for any β > β0, δ ∈ (0, δ0), N > N0 and 0 " k/N ≪ 1, where only k of the
leaves are coupled. That is, Aii = 1 for i ∈ I and Aij = 0 otherwise, with |I| = k. Then for any
0 < ε " ε0, σ ∈ I and initial conditions on Mε the system stays near a product of synchronous
and asynchronous states for all time, even though it may leave Mε.

Note that here N0 enters the proof in a similar way as in theorem 6.1, through the modified
lemma 6.5. Essentially, we show that the coupling of nodes does not affect the constants of
motion associated to the other nodes. And if the number k of coupled nodes is small, then a
modified version of lemma 5.6 can still be used to conclude that M− persists in the sense that
its real order parameter r− stays close to zero for all time.

6.1. Proof of theorem 6.1−−NAIM for weakly coupled stars

Let I := (σb, σf) ⊂ R with σb, σf given by equation (8) and (26), respectively. It follows that I
is open for β > 1. Fix σ ∈ I and δ0 and β0 such that hypothesis 5.3 is satisfied for all β > β0
and δ ∈ (0, δ0). Thus, by proposition 5.4 we conclude that there exists an NAIM M+.

Moreover, given ζ > 0 sufficiently small, proposition 5.9 guarantees a sufficiently large N0

such that there exists an NAIM M− satisfying |z−M − αasync| < ζ/3 for all N > N0. Moreover,
by theorem 5.7 for sufficiently large β0 > 1 we obtain |αasync| < ζ/3.

Consider the product manifold M = M+ × M− and fix an inter-coupling function h ∈ C1.
Since both M+ and M− are NAIMs that have exactly and approximately neutral dynamics,
respectively, the product M is again an NAIM. When we couple the two stars we introduce a
coupling of size ε between the two systems, with ε " ε0 sufficiently small, then this pertur-
bation of the product system will again have a NAIM Mε close to M. This manifold can be
described as

Mε =
{
φ+

i = φC + g̃C
i (ϕ±

0 ,ψ, θ), α = αasync

+ (gasync + g̃async)(ϕ±
0 ,ψ, θ), ϕ±

0 ,ψ ∈ S1, θ ∈ U
}

, (34)
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Figure 9. Flow along the invariant manifold Mε.

with functions ∥g̃C∥C1 , ∥g̃async∥C1 ∈ O(ε) describing the perturbation of Mε away from M. Note
that since the combined system is invariant under a global phase shift, the functions g̃C, g̃async

only depend on ϕ±
0 through their phase difference ϕ+

0 − ϕ−
0 . Finally, since Mε is an NAIM, it

follows that Mε has an invariantly foliated stable manifold Ws(Mε), see [10, theorem 4.1]. This
implies that the orbits of points in a leaf W s(m) shadow and exponentially in time converge to
the orbit of m ∈ Mε.

Although Mε has a boundary, both the persistence result and existence of the invariant stable
foliation hold true on M with an arbitrarily small neighborhood of its boundary removed. That
is, we modify the perturbed dynamics in a vertical neighborhood over ∂U, such that the modi-
fied coupled dynamics leaves a vertical section S = TN × D × TN+3 × ∂U over ∂M invariant.
Hence persistence of M to Mε is well-defined, where Mε again has an invariant boundary with
∂Mε ⊂ S, see figure 9. This follows from theorem 4.8 in [7, section 4.2]. Since Mε is invariant,
it again has an invariant stable foliation. As long as solutions of the coupled system on Mε

stay away from ∂Mε, they satisfy the unmodified dynamics and the conclusions drawn above
remain true.

Finally, we adjust ε0 such that

∥g̃C∥C1 < ζ/3 and ∥g̃async∥C1 < ζ/3

for all 0 < ε < ε0. Since the complex order parameter z+ restricted to M+ has absolute value
1 and |z+Mε

− z+M | < ζ, we obtain that r+
Mε

> 1 − ζ. Likewise,

r−Mε
= |z−Mε

| = |z−Mε
− z−M + z−M + αasync − αasync|

" |z−Mε
− z−M | + |z−M − αasync| + |αasync|

< ζ. (35)

This proves theorem 6.1.

6.2. Proof of theorem 6.2 (a)−−general coupling

For point (a) of theorem 6.2, we have to study how the coupling may perturb the trivial dynam-
ics θ̇ = 0 in the asynchronous system, and drive the system across the boundary of U, where
normal hyperbolicity may be lost. In view of (34), we can express the invariant manifold Mε

for the coupled system as a graph, where the coordinates φ+
i and α depend on the other coor-

dinates ϕ+
0 ,ϕ−

0 ,ψ, θ ∈ TN+3 × U, see figure 9. Now the boundary of Mε is contained in the
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vertical section S = TN × D × TN+3 × ∂U over TN+3 × ∂U. Solution curves that leave Mε do
so by θ leaving U through its boundary ∂U.

In the uncoupled setup there was no dynamics along θ ∈ U ⊂ TN , that is, θ̇ = 0, thus, with
coupling we have θ̇ ∈ O(ε). We choose open neighborhoods U1, U2 such that

Θ ⊂ U1 ⊂ U2 ⊂ U ⊂ TN with B(U1, δ) ⊂ U2 and B(U2, δ) ⊂ U

for some fixed δ > 0, see also figure 9. We may also assume that the modifications we made
for theorem 6.1 are contained outside U2. Solution curves with initial conditions in Mε and
θ ∈ U1 will take O

(
δ
ε

)
time to cross the gap U2\U1. As the vector field is unmodified in this

part of phase space, these conclusions are true for the unmodified system. This proves point (a).

6.3. Proof of theorem 6.2 (b)−−Kuramoto–Sakaguchi coupling

We continue to prove point (b) of theorem 6.2. Consider equation (5) in the φ coordinates and
assume that the coupling is sinusoidal, that is, h = c1 sin + c2 cos. Thus the equations for φ−

become

φ̇−
i = (1 − β) − σ sin(φ−

i − δ) − β
σ

N

N∑

j=1

sin(φ−
j + δ) + ε h(φ+

i − φ−
i + ϕ+

0 − ϕ−
0 ). (36)

Since we know already that the Watanabe–Strogatz approach can be applied to the first terms
comprising the uncoupled system, we focus on the coupling term h(φ+

i − φ−
i + ϕ+

0 − ϕ−
0 ). We

denote the associated vector field by X ∈ X(TN), but note that X also depends on φ+,ϕ±
0 as

external variables. We can write this as

h(φ+
i − φ−

i + ϕ+
0 − ϕ−

0 ) = h1(−φ−
i )h2(φ+

i + ϕ+
0 − ϕ−

0 ),

where h1, h2 again denote sinusoidal functions. We cannot apply the Watanabe–Strogatz lift
(15) to X, since h2(φ+

i + ϕ+
0 − ϕ−

0 ) is not identical for all i. However, when we restrict to the
invariant manifold Mε, then φ+

i = φC + g̃C
i (ϕ+

0 − ϕ−
0 ,ψ, θ) with g̃C

i ∈ O(ε). Hence we find

h(φ+
i − φ−

i + ϕ+
0 − ϕ−

0 ) = h1(−φ−
i )h2(φC + ϕ+

0 − ϕ−
0 ) + O(ε).

Now we can lift the vector field X
′

associated to h1(φ−
i )h2(φC + ϕ+

0 − ϕ−
0 ) using the Watan-

abe–Strogatz lift (15). This implies that X̂′ leaves θ constant, and since the remaining part
of the coupling vector field is of order ε2, it follows that θ̇ ∈ O(ε2). This proves claim 2 of
theorem 6.2.

6.4. Proof of theorem 6.4−−Stable chimera states

Finally, we prove theorem 6.4. We now assume that the coupling matrices are of the form
Aii = 1 when i ∈ I ⊂ N and zero otherwise, where |I| = k ≪ N. The coupling function h ∈ C1

is arbitrary; since h is defined on a compact set, ∥h∥C1 is bounded.
When only a small fraction of the leaves of the two stars are coupled, we can improve the

previous argument to obtain that the chimera state is fully stable for all time. To this end,
we apply the two different lifts of the vector field for the asynchronous star. We apply the
Watanabe–Strogatz lift to the uncoupled vector field and the lift (23) to the coupling terms.

For ε = 0, the dynamics of the asynchronous star are given in Watanabe–Strogatz lifted
coordinates by (18) and (19) and θ̇ = 0. The extra coupling term is given in φ coordinates by

φ̇±
i = ε h(φ∓

i − φ±
i ± Γ) for i ∈ I, (37)
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where Γ = ϕ+
0 − ϕ−

0 . Let us denote by ε Y ∈ X(TN) the vector field describing the evolution
of the φ−

i variables according to (37). We use (23) to find the lift Ŷ ∈ X(D × S1 × TN) of Y
that gives the dynamics in Watanabe–Strogatz coordinates. We calculate G′

α,ψ(θ) = ∂φ
∂θ (α,ψ, θ)

with φ = π(α,ψ, θ). From eiφ = Gα,ψ (w) with w = eiθ we obtain

i eiφ ∂φ

∂θ
=

∂

∂w

[
α + eiψw

1 + ᾱ eiψw

]
i eiθ

⇐⇒ α + eiψw
1 + ᾱ eiψw

∂φ

∂θ
=

[
eiψ

1 + ᾱ eiψw
− α + eiψw

(1 + ᾱ eiψw)2 ᾱ eiψ
]

w

⇐⇒ (α + eiψw)
∂φ

∂θ
=

(1 + ᾱ eiψw) eiψw − αᾱ eiψw − ᾱ e2iψw2

1 + ᾱ eiψw

⇐⇒ ∂φ

∂θ
(α,ψ, θ) =

(1 − αᾱ) ei(ψ+θ)

(1 + ᾱ ei(ψ+θ))(α + ei(ψ+θ))
=

1 − |α|2

|α + ei(ψ+θ)|2 .

Thus we find that Ŷ is given by

θ̇i = ε

(
∂φ

∂θ

)−1

· h
(
φ−

i − φ+
i − Γ

)

= ε
|α + ei(ψ+θi)|2

1 − |α|2 h
(
πi(α,ψ, θi) + ϕ−

0 − ϕ+
i

)
for i ∈ I, (38)

θ̇i = 0 for i /∈ I, α̇ = 0 and ψ̇ = 0. We use the fact that the θi with i /∈ I are still conserved.
With modified version of lemma 5.6 we show that if k ≪ N, then the result of the lemma still
holds true with the values of θi with i ∈ I arbitrary, hence there exists an invariant manifold
with invariant boundary for the asynchronous star network.

For simplicity, let us assume by relabelling that I = {N − k + 1, . . . , N}. Define the set

Θ̄ :=
{

(ϑ, ξ) ∈ TN−k × Tk|∃θ ∈ Θ : ∀1 " i " N − k : ϑi = θi
}
⊂ TN . (39)

Note that Θ̄ is a simple extension of Θ with the first N − k entries still uniformly distributed
according to definition 5.5 and the last k arbitrary. The coupled dynamics leaves Θ̄ invariant
since ϑ̇ = 0, still. We now have the following modified version of lemma 5.6; here we fix a
C1-norm, but this is all we needed anyways.

Lemma 6.5. Fix 0 < r < 1 and consider the disc Dr = {α ∈ C||α| < r}. For each ε > 0
there exists for all N sufficiently large and k ≪ N an open neighborhood U = U′ × Tk of Θ̄ ⊂
TN such that the map Dr → C, α *→ z(α,ψ, θ) − α, with z(α,ψ, θ) given by (19), is smaller
than ε in Ck-norm, uniformly for all (ψ, θ) ∈ S1 × U.

Proof. The proof is a straightforward extension of the proof of lemma 5.6. Given θ′ =
(ϑ, ξ) ∈ Θ̄, let θ ∈ Θ as in (39). For z(α,ψ, θ′) we can estimate the difference with z(α,ψ, θ)
as

z(α,ψ, θ′) − z(α,ψ, θ) =
1
N

N∑

j=N−k+1

(
α + eiψ eiξ j

1 + ᾱ eiψ eiξ j
− α + eiψ eiθ j

1 + ᾱ eiψ eiθ j

)
.
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Since |α| < r is bounded away from 1, all terms are uniformly bounded in C1-norm, say by B.
Hence ∥z(α,ψ, θ′) − z(α,ψ, θ)∥C1 " k

N B, and thus for k ≪ N this yields a sufficiently small
contribution to the overall C1-norm ofα *→ z(α,ψ, θ

′
) − α relative to the estimate for z(α,ψ, θ)

in the proof of lemma 5.6. #
To prove theorem 6.4, we now use lemma 6.5 instead of lemma 5.6. Note that U = U′ × Tk

is invariant under the coupled dynamics since its boundary ∂U = ∂U′ × Tk is invariant. Thus,
we find that also the persistent manifold Mε has an invariant boundary.

6.5. Coupling through hubs

Connecting two stars using a general coupling mechanism invalidates the use of the Watan-
abe–Strogatz approach and the description of the dynamics through the action of the Möbius
group. An important exception to this rule is when only the hubs of the stars are coupled, since,
as we will show, we can still apply the WS dimensional reduction method, even if now we have
that the phase difference of the hubs acts as an external field to the equations describing the
order parameters z.

Consider two stars with their hubs coupled sinusoidally, with strength ε,

ϕ̇±
k = 1 + σ sin(ϕ±

0 − ϕ±
k + δ),

ϕ̇±
0 = β +

σβ

N

N∑

j=1

sin(ϕ±
j − ϕ±

0 + δ) + ε sin(ϕ∓
0 − ϕ±

0 + δ),
(40)

Again we change to coordinates φ±
k = ϕ±

k − ϕ±
0 that measure the relative phases of the leaves

with respect to the hubs. Secondly, we introduce Γ = ϕ+
0 − ϕ−

0 , the difference between the
hub phases. With these new variables, the equations become

φ̇±
k = 1 − β − σ sin(φ±

k − δ) − βσ

N

N∑

j=1

sin(φ±
j + δ) + ε sin(∓Γ+ δ),

Γ̇ =
σβ

N

N∑

j=1

(
sin(φ+

k + δ) − sin(φ−
k + δ)

)
− 2ε cos(δ) sin(Γ).

For each star the equations of motion are in the appropriated form and we can apply the WS
approach, where the functions f ± and g± are now given by

f ± =
−σ e−iδ

2i
,

g± = 1 − β − βσ

(
z± eiδ − z̄± e−iδ

2i

)
+ ε sin(∓Γ + δ).

The difference here is that the functions g± now depend on the phase difference Γ of the hubs,
that, in its turn, depends on the relative phases of the leaves of both populations. Nevertheless,
the dependence is the same for all leaves and therefore follows the WS approach. The equations
for the WS variables α± are thus given by

α̇± = −σ

2
(e−iδ + β eiδ)(α±)2 + i(1 − β)

(
1 + ε

sin(∓Γ + δ)
1 − β

)
α± +

σ

2
β e−iδ|α±|2 +

σ

2
eiδ ,
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where we used that z± = α±. The difference now is that where before would appear only the
natural frequency of the leaves ω = 1, now we have a term 1 + ε sin(∓Γ+δ)

1−β that comes from the
coupling. The equation for Γ can be written as

Γ̇ = σβ I((z+ − z−)e−iδ) − 2ε cos(δ) sin(Γ)

We can view the effect of the coupling as inducing oscillations of amplitude ε/(1 − β) to the
natural frequency ω and therefore we expect the persistence of the fixed points.

7. Open problems and conclusions

We presented chimera states born from the coexistence of synchronous and asynchronous
dynamics in the mean-field of a single star graph. We showed that the chimera states in coupled
star graphs correspond to the existence of an invariant manifold with boundary. We associated
their breaking with dynamics running into the boundary of the invariant manifold and pro-
vided lower bounds for their survival. Predicting whether such chimeras break to a complete
synchronous dynamics of the network or to asynchronous remains an open problem.
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Appendix A. Proof of discontinuous transition theorem 5.8

The averaging principle will play role in our analysis. Let D ⊂ Rn be an open set. F1 ∈
C1(D, S1), Ω and F2 are Lipschitz and all three functions are 2π-periodic in η. Moreover, Ω is
bounded away from zero, i.e.,

Hypothesis A.1. Suppose

0 < m1 " inf
(x,η)∈D×S1

|Ω(x, η)| " sup
(x,η)∈D×S1

|Ω(x, η)| " m2 < ∞

where m1 and m2 are ε-independent constants.

Consider the original system given by

ẋ = εF1(x, η),

η̇ = Ω(x, η) + ε F2(x, η), (x(0), η(0)) = (x0, η0), x ∈ D, η ∈ S1.
(A.1)

and the averaged system given by

ẏ = εF̄(y),

χ̇ = Ω(y,χ), (y(0),χ(0)) = (x0,χ0) ∈ D × S1,
(A.2)
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where

F̄(y) =
1

2π

∫ 2π
0

F1(y,ϑ)
Ω(y,ϑ) dϑ

1
2π

∫ 2π
0

dϑ
Ω(y,ϑ)

is the first order averaged vector field. If the averaged system has an asymptotically stable fixed
point, solutions of the original system are approximated by averaged ones. That is, we have
the following adapted version of the theorem, see [6, theorem 7.2] or [22, lemma 7.10.1–2,
theorem 7.10.4].

Theorem A.2 (Averaging with attraction). Let D ⊂ Rn be an open set and consider the
equation (A.1). Suppose that the averaged system equation (A.2) has an asymptotically stable
fixed point y = 0, F̄ ∈ C1(D) and has a domain of attraction D0 ⊂ D. For any compact K ⊂ D0

there exists a ε0 and c > 0 such that for all x0 ∈ K and for each ε < ε0

∥x(t) − y(t)∥ " cε, 0 " t < ∞.

Now, we present the proof of theorem 5.8. We will obtain this result as a consequence of
three lemmas. To this end, we first need to establish some preliminaries.

The planar system (28) in polar coordinates can be rewritten in the form

ṙ = F1(r, η) and η̇ = β Ω(r, η) + F2(r, η)

where

F1(r, η) :=
σ

2
(1 − r2) cos(η − δ), (A.3a)

Ω(r, η) := − 1 − σr sin(η + δ), (A.3b)

F2(r, η) := 1 − σ

2
1 + r2

r
sin(η − δ). (A.3c)

We can parameterize time using the parameter β and introduce an averaged system on the new
time τ :=βt. First, we need some auxiliary results.

Lemma A.3. Fix δ0 ∈ (0, 1) and consider R : [δ0 − 1, 1 − δ0] → R as

R(x) =
P(x)
Q(x)

,

where

P(x) = − 1
π

∫ 2π

0

sin ϑ

1 + x sin ϑ
dϑ and Q(x) =

1
2π

∫ 2π

0

dϑ
1 + x sin ϑ

.

Then R is a smooth function satisfying

R(0) = 0, R(x) > 0 for x ∈ (0, 1 − δ0], and
dR(0)

dx
= 1.

Proof. First we calculate P(x). We Taylor expand the function 1/(1 + x sinϑ) to obtain

P(x) = − 1
π

∫ 2π

0
sin ϑ

∞∑

n=0

(−1)n(x sin ϑ)ndϑ
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notice that
∫ 2π

0 sin2k+1 ϑdϑ = 0 as sin2k+1 ϑ is an odd function in [0, 2π] and thus

− 1
π

∫ 2π

0

sin(ϑ)
1 + x sin(ϑ)

dϑ =
∞∑

k=1

a2kx2k−1

where

a2k =
1
π

∫ 2π

0
sin2k ϑdϑ > 0, k ! 1

so P is a monotone function. Moreover,

a2 = 1, a4 =
3
4

, and a6 =
5
8
.

Repeating the same procedure

Q(x) =
1

2π

∫ 2π

0

∞∑

n=0

(−1)n(x sin ϑ)ndϑ = 1 +
∞∑

k=1

a2k

2
x2k = 1 +

x
2

P(x).

Therefore, R(x) is positive, and the claim follows. #
This lemma will play a role in the averaging approximation for the dynamics of α.

Lemma A.4. Fix 0 < δ0 < 1 and consider Dδ0 := {z ∈ C : |z| < 1 − δ0}. For any 0 < σ <
1, 0 < δ < π/4, α0 ∈ Dδ0 there exist constants c > 0, and β0 > 0 such that for each β > β0
the solutions α(t) of equation (A.3) in τ := βt with initial condition α0 ∈ Dδ0 satisfy

∥r(τ ) − ρ(τ )∥ <
c
β

for τ ! 0, (A.4)

where ρ(τ ) is the trajectory of the averaged system

ρ′ =
1
β

F̄(ρ) (A.5)

with initial condition ρ(η0) = r0, where F̄ : [δ0 − 1, 1 − δ0] → R is smooth and satisfying

F̄(0) = 0, F̄(ρ) < 0 for ρ ∈ (0, 1 − δ0] and
dF̄(0)

dρ
= −1

4
σ sin 2δ.

Proof. Performing a change of time scale t *→ τ = βt in equation (A.3), we obtain:

r′ = ε F1(r, η) and η′ = −1 − σr sin(η + δ) + εF2(r, η), (A.6)

where ′ denotes differentiation with respect to τ and ε = 1/β. The transformation induces a
slow–fast structure where the small parameter is ε. Notice that r = 1 is a fixed point of r and
thus solutions starting with r < 1 cannot have r > 1 and neither have r = 1 in finite time. Thus,
η′ is bounded away from zero, hypothesis A.1, and we can use η as our new time. To apply the
averaging principle, we define the averaged vector field as

F̄(r) :=
1

2π

∫ 2π
0 H(r,ϑ, 0)dϑ

1
2π

∫ 2π
0

dϑ
−1−σr sin(ϑ+δ)

, (A.7)
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where

H(r, η, ε) =
σ
2 (1 − r2) cos(η − δ)

−[1 + σr sin(η + δ)] + ε
(

1 − σ
2

1+r2

r sin(η − δ)
) . (A.8)

The denominator of equation (A.7) resembles the Q(x) function of lemma A.3. So, replacing
equation (A.8) into (A.7), we calculate the numerator:

∫ 2π

0

cos(η − δ)
1 + σr sin(η + δ)

dη = cos(2δ)
∫ 2π+δ

δ

cos(ϑ)
1 + σr sin(ϑ)

dϑ

+ sin(2δ)
∫ 2π+δ

δ

sin(ϑ)
1 + σr sin(ϑ)

dϑ,

where we used the change of variables ϑ = η + δ and the trigonometric relation for the cosine.
Since both integrals are along a full cycle of ϑ, the first integral is zero. Then

− 1
π

∫ 2π

0

cos(η − δ)
1 + σr sin(η + δ)

dη = sin(2δ)P(σr).

From this observation we obtain the vector field for ρ. Thus we obtain

F̄(ρ) = − sin 2δ
4

σ(1 − ρ2)R(σρ).

From lemma A.3 it follows that since R(σρ) > 0 for ρ > 0 we obtain F̄(ρ) < 0.
To conclude the stability, notice that since F̄ < 0 for ρ < 1 we have that solutions converge

to the origin. Solutions will enter a ball of radius δ1 sufficiently small. We show that this con-
vergence is exponential as dF1(0)

dρ < 0. The result follows by the principle of linearized stability:
given δ1 > 0 small enough, all solutions with ρ < δ1 converge to the origin exponentially fast.
Next applying averaging theorem A.2 our claim follows. #

Lemma A.5. Fix 0 < δ0 < 1. Then, for any 0 < σ < 1, 0 < δ < π/4,α0 ∈ Dδ0 , there exists
β0 > 0 such that for each β > β0 the solutions α(t) of equation (A.3) with initial condition
α0 ∈ Dδ0 converge to αasync.

Proof. Given ε0 > 0 small enough, lemma A.4 shows that there exist constant c and β0 such
that for every β > β0 we have ∥α(τ )∥ = ∥r(τ )∥ " ε0, since 0 is a hyperbolic fixed point for
ρ. Equation (A.3) has a stable fixed point αasync satisfying |αasync| → 0 as β →∞ as can be
observed in equation (29). Moreover, when β →∞ the real part of the Jacobian eigenvalues of
αasync tends to a constant independent of β. Thus, by the principle of linearized stability there is
δI > 0 independent of β such that any initial condition in the open ball B(αasync, δI) converges
to αasync. Now we choose ε0 < δI . This is guaranteed because δI is independent of β. Thus,
when β is large enough, solutionsα starting in Dδ0 enter B(αasync, δI) and thus must converge to
αasync. #

Proof of Theorem 5.8 By lemma 5.6 there is N0 such that for all N > N0

|z(τ ) − α(τ )| " ε/2.
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Next, by the averaging principle there exists c and β0 such that for all β > β0 we find constants
M(β) and µ(β) such that

|α(τ ) − αasync| " |r(τ ) − ρ(τ )| + 2|ρ(τ )| + |ρ(τ ) − r−|

" c
β

+ 2M |ρ0| e−µτ + M |ρ0 − r−| e−µτ .

Consequently, after a fixed finite time T0 we can make it below ε/2. Applying the triangle
inequality for t > T0 we obtain

|z(t) − αasync| " |z(t) − α(t)| + |α(t) − αasync|

and the claim follows. #
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