Bifurcation Theory Warming-up

August 6, 2018

Handling date: 13/08

Prove the following results

Theorem 1 Let (\mathbb{M}, d) be a complete metric space and let $T : \mathbb{M} \to \mathbb{M}$ be a contraction mapping with contraction constant k. Then T has a unique fixed point $x \in \mathbb{M}$. Furthermore, if $y \in \mathbb{M}$ is arbitrarily chosen, then the iterates $\{x_n\}_{n=0}^{\infty}$, given by

$$x_0 = y \tag{1}$$

$$x_n = T(x_{n-1}), n \ge 1,$$
 (2)

have the property that $\lim_{n\to\infty} x_n = x$.

Theorem 2 Let (M, d) be a complete metric space and let

$$B = \{ x \in \mathbb{M} : \mathrm{d}(z, x) < \epsilon \},\$$

where $z \in \mathbb{M}$ and $\epsilon > 0$ is a positive number and let $T : B \to \mathbb{M}$ be a mapping such that

$$d(T(y), T(x)) \le k d(x, y), \ \forall \ x, y \in B,$$

with contraction constant k < 1. Furthermore assume that

$$d(z, T(z)) < \epsilon(1-k).$$

Then T has a unique fixed point $x \in B$.

Theorem 3 Let (\mathbb{M}, d) be a metric space and let $T : \mathbb{M} \to \mathbb{M}$ be a mapping such that

$$d(T(x), T(y)) < d(x, y), \quad \forall x, y \in \mathbb{M}, \ x \neq y.$$

Furthermore assume that there exists $z \in \mathbb{M}$ such that the iterates $\{x_n\}_{n=0}^{\infty}$, given by

$$x_0 = z \tag{3}$$

$$x_n = T(x_{n-1}), \ n \ge 1,$$
 (4)

have the property that there exists a subsequence $\{x_{n_j}\}_{j=0}^{\infty}$ of $\{x_n\}_{n=0}^{\infty}$, with

$$\lim_{j \to \infty} x_{n_j} = y \in \mathbb{M}$$

Then y is a fixed point of T and this fixed point is unique.

Theorem 4 Let (\mathbb{M}, d) be a metric space and let $T : \mathbb{M} \to \mathbb{M}$ be a mapping such that $d(T(x), T(y)) < d(x, y), \quad \forall x, y \in \mathbb{M}, x \neq y.$

Further assume that

 $T: \mathbb{M} \to K,$

where K is a compact subset of \mathbb{M} . Then T has a unique fixed point in \mathbb{M} .

Theorem 5 Let (\mathbb{M}, d) be a complete metric space and let $T : \mathbb{M} \to \mathbb{M}$ be a mapping such that

$$d(T^m(x), T^m(y)) \le k d(x, y), \quad \forall x, y \in \mathbb{M},$$

for some $m \ge 1$, where $0 \le k < 1$ is a constant. Then T has a unique fixed point in \mathbb{M} .

Theorem 6 Let (Λ, ρ) be a metric space and (\mathbb{M}, d) a complete metric space and let

 $T:\Lambda\times\mathbb{M}\to\mathbb{M}$

be a family of contraction mappings with uniform contraction constant k, i.e.,

$$d(T(\lambda, x), T(\lambda, y)) \le k d(x, y), \ \forall \lambda \in \Lambda, \ \forall x, y \in \mathbb{M}.$$

Further more assume that for each $x \in \mathbb{M}$ the mapping

$$\lambda \mapsto T(\lambda, x)$$

is a continuous mapping from Λ to \mathbb{M} . Then for each $\lambda \in \Lambda$, $T(\lambda, \cdot)$ has a unique fixed point $x(\lambda) \in \mathbb{M}$, and the mapping

 $\lambda \mapsto x(\lambda),$

is a continuous mapping from Λ to \mathbb{M} .

Theorem 7 Let \mathbb{M} be a Hilbert space and let

 $T: \mathbb{M} \to \mathbb{M},$

be a mapping such that for some constant $0 < \beta < 1$

$$||T(u) - T(v)|| \le \beta ||u - v||, \quad \forall u, v \in \mathbb{M}.$$

Then for any $w \in \mathbb{M}$, the equation

$$u + T(u) = w \tag{5}$$

has a unique solution u = u(w), and the mapping $w \mapsto u(w)$ is continuous.

Theorem 8 Let \mathbb{M} be a Hilbert space and let

$$T: \mathbb{M} \to \mathbb{M}$$

be a monotone mapping

$$\operatorname{Re}\left(\left(T(u) - T(v), u - v\right)\right) \ge 0, \quad \forall u, v \in \mathbb{M},$$

such that for some constant $\beta > 0$

$$||T(u) - T(v)|| \le \beta ||u - v||, \quad \forall u, v \in \mathbb{M}.$$

Then for any $w \in \mathbb{M}$, the equation

$$u + T(u) = w \tag{6}$$

has a unique solution u = u(w), and the mapping $w \mapsto u(w)$ is continuous.

Inverse Function Theorem: Prove Theorem 9.24 of Baby Rudin 3d Editor

Implicit Function Theorem: Prove Theorem 9.28 of Baby Rudin 3d Editor