Bifurcation Theory Warming-up

August 6, 2018

Handling date: 13/08

Prove the following results

Theorem 1 Let (\mathbb{M}, d) be a complete metric space and let $T: \mathbb{M} \rightarrow \mathbb{M}$ be a contraction mapping with contraction constant k. Then T has a unique fixed point $x \in \mathbb{M}$. Furthermore, if $y \in \mathbb{M}$ is arbitrarily chosen, then the iterates $\left\{x_{n}\right\}_{n=0}^{\infty}$, given by

$$
\begin{align*}
& x_{0}=y \tag{1}\\
& x_{n}=T\left(x_{n-1}\right), n \geq 1, \tag{2}
\end{align*}
$$

have the property that $\lim _{n \rightarrow \infty} x_{n}=x$.

Theorem 2 Let (\mathbb{M}, d) be a complete metric space and let

$$
B=\{x \in \mathbb{M}: \mathrm{d}(z, x)<\epsilon\},
$$

where $z \in \mathbb{M}$ and $\epsilon>0$ is a positive number and let $T: B \rightarrow \mathbb{M}$ be a mapping such that

$$
\mathrm{d}(T(y), T(x)) \leq k \mathrm{~d}(x, y), \forall x, y \in B
$$

with contraction constant $k<1$. Furthermore assume that

$$
\mathrm{d}(z, T(z))<\epsilon(1-k)
$$

Then T has a unique fixed point $x \in B$.

Theorem 3 Let (\mathbb{M}, d) be a metric space and let $T: \mathbb{M} \rightarrow \mathbb{M}$ be a mapping such that

$$
\mathrm{d}(T(x), T(y))<\mathrm{d}(x, y), \quad \forall x, y \in \mathbb{M}, x \neq y .
$$

Furthermore assume that there exists $z \in \mathbb{M}$ such that the iterates $\left\{x_{n}\right\}_{n=0}^{\infty}$, given by

$$
\begin{array}{r}
x_{0}=z \\
x_{n}=T\left(x_{n-1}\right), n \geq 1, \tag{4}
\end{array}
$$

have the property that there exists a subsequence $\left\{x_{n_{j}}\right\}_{j=0}^{\infty}$ of $\left\{x_{n}\right\}_{n=0}^{\infty}$, with

$$
\lim _{j \rightarrow \infty} x_{n_{j}}=y \in \mathbb{M}
$$

Then y is a fixed point of T and this fixed point is unique.

Theorem 4 Let (\mathbb{M}, d) be a metric space and let $T: \mathbb{M} \rightarrow \mathbb{M}$ be a mapping such that

$$
\mathrm{d}(T(x), T(y))<\mathrm{d}(x, y), \quad \forall x, y \in \mathbb{M}, x \neq y
$$

Further assume that

$$
T: \mathbb{M} \rightarrow K
$$

where K is a compact subset of \mathbb{M}. Then T has a unique fixed point in \mathbb{M}.

Theorem 5 Let (\mathbb{M}, d) be a complete metric space and let $T: \mathbb{M} \rightarrow \mathbb{M}$ be a mapping such that

$$
\mathrm{d}\left(T^{m}(x), T^{m}(y)\right) \leq k \mathrm{~d}(x, y), \quad \forall x, y \in \mathbb{M}
$$

for some $m \geq 1$, where $0 \leq k<1$ is a constant. Then T has a unique fixed point in \mathbb{M}.

Theorem 6 Let (Λ, ρ) be a metric space and (\mathbb{M}, d) a complete metric space and let

$$
T: \Lambda \times \mathbb{M} \rightarrow \mathbb{M}
$$

be a family of contraction mappings with uniform contraction constant k, i.e.,

$$
\mathrm{d}(T(\lambda, x), T(\lambda, y)) \leq k \mathrm{~d}(x, y), \forall \lambda \in \Lambda, \forall x, y \in \mathbb{M}
$$

Further more assume that for each $x \in \mathbb{M}$ the mapping

$$
\lambda \mapsto T(\lambda, x)
$$

is a continuous mapping from Λ to \mathbb{M}. Then for each $\lambda \in \Lambda, T(\lambda, \cdot)$ has a unique fixed point $x(\lambda) \in \mathbb{M}$, and the mapping

$$
\lambda \mapsto x(\lambda),
$$

is a continuous mapping from Λ to \mathbb{M}.

Theorem 7 Let \mathbb{M} be a Hilbert space and let

$$
T: \mathbb{M} \rightarrow \mathbb{M}
$$

be a mapping such that for some constant $0<\beta<1$

$$
\|T(u)-T(v)\| \leq \beta\|u-v\|, \quad \forall u, v \in \mathbb{M} .
$$

Then for any $w \in \mathbb{M}$, the equation

$$
\begin{equation*}
u+T(u)=w \tag{5}
\end{equation*}
$$

has a unique solution $u=u(w)$, and the mapping $w \mapsto u(w)$ is continuous.

Theorem 8 Let \mathbb{M} be a Hilbert space and let

$$
T: \mathbb{M} \rightarrow \mathbb{M}
$$

be a monotone mapping

$$
\operatorname{Re}((T(u)-T(v), u-v)) \geq 0, \quad \forall u, v \in \mathbb{M},
$$

such that for some constant $\beta>0$

$$
\|T(u)-T(v)\| \leq \beta\|u-v\|, \quad \forall u, v \in \mathbb{M} .
$$

Then for any $w \in \mathbb{M}$, the equation

$$
\begin{equation*}
u+T(u)=w \tag{6}
\end{equation*}
$$

has a unique solution $u=u(w)$, and the mapping $w \mapsto u(w)$ is continuous.
Inverse Function Theorem: Prove Theorem 9.24 of Baby Rudin 3d Editor
Implicit Function Theorem: Prove Theorem 9.28 of Baby Rudin 3d Editor

