Bifurcation Theory Center Manifolds

August 18, 2018 Handling date: 3/09

1. (Center Manifolds for Maps) Consider a C^k -smooth map

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} Bx + f(x,y) \\ Cy + g(x,y) \end{pmatrix}$$
 (1)

where $x \in \mathbb{R}^{n_c+n_u}$, $y \in \mathbb{R}^{n_s}$, and f and g have only non-linear terms. Suppose that the $(n_c+n_u) \times (n_c+n_u)$ matrix B has n_c eigenvalues with $|\lambda|=1$ and n_u eigenvalues with $|\lambda|>1$, while all n_s eigenvalues of the $n_s \times n_s$ matrix C satisfy $|\lambda|<1$. Let $n=n_s+n_c+n_u$.

Prove the following Theorem using the Graph Transform

Center-Unstable Manifold Assume f(0,0) = 0, g(0,0) = 0, and that the functions f and g have sufficiently small bounds and sufficiently small Lipschitz bounds Lip(f),Lip(g) on \mathbb{R}^n . Then the map has an invariant manifold

$$W^{cu} = \{(x, h(x)) : x \in \mathbb{R}^{n_c + n_u}\},\tag{2}$$

where $h: \mathbb{R}^{n_c+n_u} \to \mathbb{R}^{n_s}$ is a bounded and Lipschitz map satisfying h(0) = 0.

2. Consider the map

$$\bar{x} = a - bx - x^3. \tag{3}$$

- (a) Find equations of the bifurcation curves for the fixed points of this map and draw these curves in the plane of parameters (a, b).
- (b) On the curve which corresponds to the existence of a fixed point with the multiplier equal to -1, and the points from which a bifurcation curve emanates which corresponds to a period 2 point with a multiplier +1.
- 3. Exercise 4.3 of Chicone
- 4. Show that the center Manifold is not unique in general. Why in the proof of Theorem 4.1 in Chicone, he claims there is a unique center manifold?
- 5. Consider the system

$$\dot{x} = f(x, r)$$

satisying

$$f(0,0) = \partial_x f(0,0) = 0, \partial_r f(0,0) = 1$$
 and $\partial_{xx} f(0,0) = -2$

Prove that there exists a neighborhood of the origin, and there a smooth coordinate transformation close to the identity

$$(x,t) \mapsto (X,T)$$
 (4)

of the form $X=x\Phi(x)$ and $\frac{dT}{dt}=\Psi(x,r)$ such that the system is transformed into

$$\frac{dX}{dt} = r - X^2$$

Classify the bifurcation. In fact, it is enough the assume that $\partial_r f(0,0) > 0$ and $\partial_{xx} f(0,0) < 0$, why?

6. Study bifurcations in the system

$$\dot{x} = a - x - y^2
\dot{y} = b - y - 2xy$$

as parameters a and b vary. Namely, do the following:

- (a) Show that the system cannot have periodic orbits.
- (b) Show that the only bifurcations of equilibria of this system correspond to a single zero eigenvalue of the linearisation matrix.
- (c) Draw the bifurcation curve on the (a, b) plane.
- (d) For each of the regions, into which this curve divides the (a,b) plane, determine the number of equilibria and their stability.
- 7. Formulate and prove a theorem based on the implicit function theorem that can be used to show that a small perturbation of a family of differential equations with a saddle-node bifurcation has a nearby saddle-node bifurcation. A possible formulation can have the following flavor: suppose $\dot{x}=f(x,\mu)$ with $\mu\in\mathbb{R}$ unfolds a saddle-node bifurcation. Consider a family $\dot{x}=f(x,\mu,\nu)$ with $f(x,\mu,0)=f(x,\mu)$. Prove that $\dot{x}=f(x,\mu,\nu)$ unfolds a saddle-node for each small value of ν .
- 8. Determine bifurcations, stability of critical elements and sketch the bifurcation diagram of

$$\ddot{y} + \dot{y} + y(2y^2 + \lambda(\lambda - 2)) = 0,$$

- 9. Find center manifolds to second order and reduced systems to third order for the following problems:
 - (a) $\dot{x} = x^2y + \alpha z^2 2, \dot{y} = -y + x^2 + zy, \dot{z} = z y^2 + xy.$
 - (b) $(x, y, z) \mapsto (-x + yz, -\frac{1}{2}y + x^2, 2z xy).$