
Supplemental Material for “Revealing dynamics, communities, and criticality from data”

Deniz Eroglu1,2,3,∗ Matteo Tanzi2,4, Sebastian van Strien2, and Tiago Pereira1,2
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I. COMPARISON WITH THE SPARSE RECOVERY

This method gives a way of recovering the equations from
data by considering the evolution map as a linear combination
of a well chosen basis of functions, called library. The main
assumption is that many coefficients will be zero. That is,
the vector of coefficients will be sparse [1], and some of the
nonzero coefficients can give, in many cases, information on
the network structure. However, this method does not work
in our case where interactions are very small, and coefficients
identifying the presence of a link are very close to zero. Since
we haveN nodes in our network, we consider the library L =
[φ1(x1), φ1(x2), · · · , φ1(xN ), φ2(x1, xN ), · · · , φk(xN , xN )]
as the set of basis functions. And denote matrix X and con-
catenating the vectors (xi(t2), . . . , xi(tn))

∗ for i = 1, . . . , N
respectively, where ∗ denotes the transpose and we introduce

Θ =


φ1(x1(t1)) · · · φk(xN (t1), xN (t1))
φ1(x1(t2)) · · · φk(xN (t2), xN (t2))

...
...

...
φ1(x1(tn−1)) · · · φk(xN (tn−1), xN (tn−1))


We then look for a solution of the system X = ΘΞ where

is the matrix of coefficients. The sparse recovery technique
then solves the linear equation for Ξ iteratively enforcing the
sparsity of Ξ by introducing σ such that if |ζij | ≤ σ we set
such entry to zero [1].

In our case, we have considered the scenario where the
synapsis between neurons are electric and we generate the
multivariate data for the cat cerebral cortex. We assumed we
have knowledge of the coupling function so we can easily read
the network structure from the sparse recovery. We choose a
library of polynomials as φj(xi) = xji for j = {1, · · · , 5} and
the pairwise φj(xi, xk) to be homogeneous polynomials of
degree two in the variables xi and xk for i, k ∈ {1, · · · , N}.

II. RECONSTRUCTION OF DEGREE DISTRIBUTIONS

Scale-free networks. We create ensembles of scale-free
network of N = 6000 nodes with distinct structural expo-
nents γ following the same technique as in the main body of
the manuscript. As in the main body, we only consider the
largest connected component of the network (giant compo-
nent). For each network realisation we compute the largest
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degree ∆ and, for simplicity, we fix the coupling strength
α/∆ = 0.5 throughout the rest of the section.

A. Doubling map

Let us now apply our approach when Fi is a perturbed ver-
sion of the doubling map. Since the dynamics is one dimen-
sional, we denote x = x and Fi(x) = fi(x) with

fi(x) = 2x+ εi sin 2πx mod 1

and where we take εi to be i.i.d. random variables (i.e. inde-
pendent over i) uniformly distributed on [0, 10−3]. Likewise
we write H = h with

h(xj , xi) = sin 2πxj − sin 2πxi.

We fixed α = 10−2. Since the unique absolutely continuous
invariant measure for the doubling map is the Lebesgue mea-
sure m, we have

V (x) = v(x) =

∫
h(y, x)dm(y)

yielding v(x) = − sin 2πx and the reduced dynamics takes
the form

xi(t+ 1) = fi(x(t))− αkiv(x(t)) + αξi(t).

We aim to recover the reduced dynamics and in particular
f and v from the data of a multivariate time series with
T = 2000 time steps.

From data to Model. We assume not to have access to the
network structure and only measure the time-series {xi(t)} at
each node, as illustrated in Figure 1 Data. By performing the
steps described in the main body of the manuscript, we can
recover an effective network. We now illustrate in detail our
procedure in the case above of the doubling map.

(i) Reduced dynamics. From the time series observed at each
node, we construct the attractor for that particular node. Com-
puting the embedding dimension we notice that the dynamic
at each site (node) is well described by a one dimensional
map, gi(x) = fi(x)− αkiv(x), up to a fluctuation ξi. Hence,
to reconstruct the attractor it suffices to obtain the return
map. Return maps at different nodes are shown in Figure 1 (i).

(ii) Isolated dynamics and effective coupling. We start by
introducing a similarity measure.
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FIG. 1. Step-by-step construction of an effective network for dou-
bling maps coupled on a scale free network. Our approach recov-
ers the local dynamics of the doubling map, interaction function and
statistical structure from the time series. Starting from datasets we
uncover the approximate evolution rule for the time series using ma-
chine learning techniques. Such rules will be different for different
nodes (depending on their degree) as shown in panel (i). Analysing
the differences between these rules by means of a similarity anal-
ysis, we are able to obtain model of the isolated dynamics and an
estimate the coupling function, see panel (ii). Finally, by using the
theory of dynamical systems and dimensional reduction, we are able
to estimate the number of input each node receives and the commu-
nity structures. We then create a random presentation of the network
structure by using a network model such as the configuration model.

Similarity of the time series. Two time series are consid-
ered almost the same, if whenever yi(t) and yj(t′) are close
then yi(t + 1) and yj(t′ + 1) are also close. This means that
one considers the new times series zi(t) := (yi(t), yi(t+ 1)),
zj(t) := (yj(t), yj(t + 1)), t = 0, . . . , T − 1, reshuffle them
according to the lexicographical ordering (i.e. according to

the magnitude of the first coordinate), and then take sij to be
the Pearson correlation distance between these reshuffled se-
quences. So if the time series at i and j are just out of phase,
then, thanks to the reordering, their distance sij = 0. We then
calculate the intensities Si =

∑
j sij and use this to classify

the nodes. The similarity matrix is shown in Figure 1(ii).
Using the correlation distance described above, we deter-

mine for which nodes Si is minimal and in this way we iden-
tify the low degree nodes. For the low degree nodes, the se-
quence {(yi(t), yi(t + 1))}t=0,...,T−1 lies close to the graph
of the return map for f , and thus we obtain a good estimate
for the isolated dynamics f , see Figure 1(ii). Next, we apply
the reduction to estimate the coupling function.

To obtain the effective coupling v from data, take a
hub j and consider the sequence {(yj(t), yj(t + 1))}2000t=1 .
The resulting time series approximates the graph of gi and
subtracting f gives an approximation of the function v up to
a multiplicative constant (shown in Figure 1(ii)).

(iii) Network Structural Statistics. There are two ways to
obtain information about the statistics of the degrees ki. The
first one uses the noise variance. In fact, the size of the fluc-
tuations ξi depends on the number of connections the node
i makes, and with good approximation Var(ξi) ∝ ki. The
second one uses f and v recovered at the previous step. For
every node i, choose βi to fit the time series {(yi(t), yi(t +
1))}t=0,...,T−1 with the map

gi(y) = f(y)− βiv(y).

The value of βi is obtained by Bayesian inference on the re-
turn maps is shown in the first panel of Figure 1(i) as f and v.
The distribution of βi will be linear proportional to the degree
distribution and so we can use it to obtain the the structural pa-
rameter. At this point we can construct an effective network
with degree distribution close to that of the real network can
be constructed with the configuration model as discussed in
the main body of the manuscript. We can also check whether
there are communities in the network by analyzing the covari-
ance of the fluctuations ξi.

In Figure 2 a) we reconstruct from the distribution of βi the
structural exponent γ for 1000 scale-free network with expo-
nents ranging from 2.4 to 3.6

B. Robustness of the reconstruction under noise

Adding some small independent noise to the dynamics does
not influence much the reconstruction procedure for the dou-
bling map. This is a consequence of stochastic stability of
the local dynamics together with the persistence of the reduc-
tion [2]. On the other hand, when the fluctuations become too
large the reconstruction will underestimate the network struc-
ture. To illustrate these effects, we consider the randomly per-
turbed doubling maps

xi(t+ 1) = fi(x(t)) + ηi(t)

where the random variables ηi(t) are independent over i and t,
and identically distributed uniformly in the interval [−η0, η0].
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FIG. 2. Recovering the structural parameter of scale free networks
using effective networks. The power-law exponent γ versus the es-
timated γest from data for 1000 distinct networks. Inset a) shows the
reconstruction for coupled doubling maps with diffusive coupling.
Inset b) shows the reconstruction for coupled logistic maps with Ku-
ramoto interactions. Inset c) Spiking neurons with electrical cou-
pling, and finally, inset d) shows the reconstruction for the Hénon
maps with the y−component diffusive coupled at the x−component.

Intuitively, as long as η0 < αmin ki the reconstruction will
go through as the noise fluctuation will not compete with the
coupling term. Notice that we normalize ‖v‖ = 1. This is
illustrated in Figure 3. In inset a) the noise has a large support
ε = 0.1, and in particular larger than the coupling αmin ki =
10−2. As a consequence, the reconstruction understimate the
number of low degree nodes. In inset b) the noise has a small
support ε = 10−3.

C. Coupled Roessler Oscillators

Assume that the local dynamics is modelled by a Rössler
oscillator [4]. The dynamics is now in continuous time and
our method can also be applied by using a suitable Poincaré
section. This gives an induced map that describes the dynam-
ics of the system at specific instants of time (when the system
hits a selected subset of phase space). Denoting x = (x, y, z)∗

the vector field is given by F (x) = (y − z, x + 0.2y, 0.2 +
z(x− 9)) and the coupling function, assumed to be diffusive,
is given by H(xi,xj) = E(xj − xi), where E projects to
the first component, i.e., E(x, y, z) = (x, 0, 0). So, our main
equation reads as

ẋ = F (x) + α

N∑
j=1

AijE(xj − xi) (1)
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FIG. 3. [Color Online] Effective networks are robust under random
perturbations. When stochastic perturbations are moderate effective
networks provide sharp estimates on the network structure. If the
noise is large, the difference between the time-series at low and high
degree nodes becomes blurred. In this case even the effective net-
work underestimates the structural parameter γ. Inset a) shows the
reconstruction of the degree distribution for ε0 = 0.1. Inset b) shows
that the reconstruction is unaffected by the noise for ε0 = 10−3.

a) b) c)

FIG. 4. Main estimations of the reconstruction for the Rössler sys-
tems. In inset a) we show the return maps obtained from the time-
series of a hub and a low-degree node. Inset b) shows a return plot
for the coupling function which is used to estimate the reduced dy-
namics and the degrees. Inset (c) shows the power-law distribution
of the degrees estimated from data and for the original network.

We perform a numerical integration of the equations on the
Rich-Club network using a 4th order Runge-Kutta with inte-
gration step 10−4 and get the data {xi(t)}t≥0. Using a statis-
tical analysis of the time-series of the state variables, we are
not able to reveal the connectivity structure.

The data is phase coherent, that is, taking a Hilbert Trans-
form we can decompose the time series in terms of amplitude
and phase we conclude that the spread in the phase variable
is small and thus the return time to a given section is nearly
constant. So, we consider the Poincaré section defined by the
maxima wi of the time series xi(t). This gives us a time se-
ries {wi(n)} indexing all maxima. We then apply all the steps
of the reconstruction procedure to this time series. Because
of the coherent dynamics of the phase, the coupling form is
preserved in the Poincaré section. The results of the network
structure estimation are presented in Figure 4.

III. RECONSTRUCTION OF RICH-CLUB MOTIFS

We report the performance of the method in the setting of
a network of 100 nodes having five clusters of 20 nodes each.
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FIG. 5. Reconstruction of a rich-club motif for coupled doubling
maps with diffusive coupling h(x, y) = sin 2πy − sin 2πx. The
left panel is a color map of the pairwise Pearson-correlation between
the time-series xi and xj . Due to the strong chaotic behaviour this
analysis does not give any information on the community structures.
In the right panel, we show the colormap of the noise correlation.
The clusters are manifested in the correlation structure of the noise,
namely, the four communities and the integrating cluster.

Four of these clusters are modeled as Erdös-Renyi random
graph with connection probability p = 0.3. The remaining
cluster is the integrating clusters with connection probability
p = 0.8. The results are in Figures 5 to 8.

Filtering out the deterministic chaos. We need to filter the
contributions of the deterministic parts to reconstruct the com-
munity structure. Indeed, for two nodes i and j in the same
cluster, the signals have the form

xi(t) = X̃i(t) + ζ(t),

and xj(t) = X̃j(t) + ζ(t) where X̃i and X̃j is a superposi-
tion of the deterministic chaos depending on the variable at
the node and independent fluctuations coming from the rest of
the network, while ζ is common noise. X̃i and X̃j have fast
decay of correlations, depends on different sets of variables,
and for the sake of the following argument, can be assumed to
be independent between each other and with ζ. Under these
assumptions,

Corr(X̃i(t) + ζ(t), X̃j(t) + ζ(t)) =
Var(ζ)

σxiσxj

.

Hence, the large values of the variance of the time series leads
to strong suppression of the correlation coming from the small
common noise ζ.

IV. PREDICTING CRITICAL TRANSITIONS IN
RICH-CLUB NETWORKS OF CHAOTIC SYSTEMS

We present another example of how to use the effective net-
work methodology to predict critical transitions. In this case
we choose the doubling map for the local dynamics coupled
on a rich-club network with clusters sampled as Erdös-Renyi
graphs. Consider a rich club network of 2200 elements with
5 clusters. Four of the clusters are made of N` = 500 nodes
with small degrees, and one cluster (called integrating cluster
or rich club) has NI = 200 nodes which are connected with

a) b)

C
or

r(
ξ i

,ξ
j)

FIG. 6. Reconstruction of rich club for logistic maps with Kuramoto
coupling h(x, y) = sin 2π(y − x). The left panel shows a color
map of the pairwise Pearson-correlation between the time-series xi
and xj . In the right panel, we show the colormap of the noise cor-
relation that reveals the community structure and, in particular, the
integrating cluster.
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FIG. 7. [Color Online] Reconstruction of rich club for spiking neu-
rons with electrical coupling. The left panel shows a color map of the
pairwise Pearson-correlation between the time-series of the mem-
brane potential. The right panel, shows the colormap of the noise
correlation revealing the community structure and in particular, the
integrating cluster.

most of the network. The edges within a cluster of low degree
nodes are assigned as described above.
As a model for the isolated dynamics, we use the doubling
map f(x) = 2x mod 1 with the diffusive coupling

H(xi,xj) = h(xj , xi) = ϕ(xj)− ϕ(xi)

a) b)
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FIG. 8. [Color Online] Reconstruction of rich club for bursting neu-
rons with electrical coupling. The left panel shows a color map of the
pairwise Pearson-correlation between the time-series of the mem-
brane potential. The right panel, shows the colormap of the noise
correlation revealing the community structure and in particular, the
integrating cluster.
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where we picked ϕ(x) = sin(2πx). We use the function

E(t) =
1

NI(NI − 1)

∑
i,j∈IC

‖xi(t)− xj(t)‖

as an empirical measure of the synchronization level at time
t. From a single multivariate time-series, when the coupling
is fixed at α0∆ = 0.2 (red marker Figure 9), the analysis of
〈E〉 gives no sign of critical transitions. A statistical analysis
shows that the variance of the averaged synchronization error
is not amplified, and the extreme value statistics fails to reveal
a transition as it also does an analysis of dynamical correla-
tions.
As described above, we can use the effective network method-
ology to recover the local dynamics f and the effective cou-
pling v. In particular we recover the isolated dynamics
f(x) = 2x within 4% accuracy for the poorly connected
nodes. The unique physical equilibrium measure for this map
is the uniform distribution m on [0, 1). Furthermore, we re-
cover the effective coupling

v(x) =

∫
h(y, x)dm(y) = − sin 2πx.

At this point, we know that the approximate evolution of
any node i is given by gi = fi + αkivi, and we can study
numerically or analitically this rule to find those values of
α for which the integrating cluster exhibits synchrony. The
analysis shows that excursions towards synchronization will
start once the coupling is increased by 15% (see Figure 9).
Below we provide the details on how to recover this critical
value of α for which a transition arises.

Reduction in the Integrating Cluster. Nodes in the in-
tegrating cluster have roughly degree ∆ and make κ∆
connections inside the integrating cluster and (1 − κ)∆ to
the rest of the network.The interactions felt by a node in the

rich-club can be split in those coming from nodes in other
clusters and those coming from nodes within rich-club itself:∑

j

Aijh(xi, xj) =
∑
j∈RC

Aijh(xi, xj) +
∑
j 6∈RC

Aijh(xi, xj)

But,∑
j 6∈RC

Aijh(xi, xj) = (1− κ)∆

∫
h(xi, y)dµ(y) + ξoi (t)

where µ is the invariant measure for the nodes outside the inte-
grating cluster 1. Hence, the equation of the integrating cluster
can be written as

xi(t+ 1) = qi(xi(t)) +
∑
j∈RC

Aijh(xi, xj) + ξoi (t),

where

qi(xi(t)) = fi(xi(t)) + (1− κ)∆α

∫
h(xi, y)dµ(y).

1 In the example above µ is the Lebesgue measure m.

We can estimate µ empirically analyzing each cluster. Assum-
ing that

h(x, y) = ϕ(y)− ϕ(x),

we can recover ϕ from the analysis of qi using the recon-
struction techniques. In fact, for this particular choice of h,∫
h(x, y)dµ(y) is equal to−ϕ(x) plus a constant. Now if ν is

the measure that describes the behaviour of a node in the in-
tegrating cluster, then the interaction within the rich-club can
be written as

∑
j∈RC

Aijh(xi, xj) = κ∆

∫
h(xi, y)dν(y) + ξc(t) = κ∆

(
−ϕ(x) +

∫
ϕ(s)dν(s)

)
+ ξc(t). (2)

Putting the two equations together one has that

xi(t+ 1) = gi(xi(t)) + α∆c(µ, ν) + ζi(t) (3)

where gi = fi − α∆ϕ models the reduced dynamics and

c(µ, ν) = (1− κ)∆α

∫
ϕ(s)dµ(s) + κ∆α

∫
ϕ(s)dν(s)

is the mean contribution from all interactions (inside and out-
side the integrating cluster). Finally

ζi = ξoi (t) + ξc(t)

combines the effect of the fluctuations.

Model from Data. From a single multivariate time series
at a given coupling parameter, shown in Figure 9 as a red
dot, we reconstruct the model. First, we obtain the the rule
gi which we uncover to be gi(x) = 2x − βi sin 2πx mod 1,
hence βi = 0.169 and this number is nearly independent of
the node in the integrating cluster. Hence, we obtain an esti-
mate (α∆)est = 0.169. We also obtain that the dynamics of
nodes in the communities is well approximated by f .

Next, we need to estimate κ to construct a model for the
connectivity of the integrating cluster. From the recovered
local dynamics f , one knows that µ is the Lebesgue measure
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and, since
∫
ϕdµ = 0, we obtain

c(µ, ν) = κ

∫
ϕdν.

In the regime of parameters where the measurements have
been made, ν can be obtained empirically and this allows to
recover κ since

1∫
ϕdν

1

α∆
〈xi(t+ 1)− gi(xi(t))〉 → κ, (4)

where we evaluate
∫
φdν with respect to the empirically

retrieved ν, we substitute α∆ with the estimated value above,

and 〈·〉 denotes the time average. We obtain that κ = 0.47.
The data analysis reveals that such κ value is nearly inde-
pendent of the node in the integrating cluster. Moreover, the
analysis of the covariance of the noise in the integrating clus-
ters shows a lack of communities and the functional analysis
network indicates that the integrating cluster of is a random
network 200 nodes with p = 0.83. From this analysis, we
obtain an estimate for ∆ ≈ p×200/κ = 353 = ∆est. We are
now able to estimate α by αest = (α∆)est/∆est = 5×10−4.

Synchronization Prediction. With the reconstructed data
(f, v, A), we obtain that for a node in the integrating cluster,
(3) reads as

xi(t+ 1) = 2xi(t)− α∆ sin(2πxi(t)) + κ∆α

∫
sin(2πs)dν(s) + ξ(t).

When 1/2π < α∆ < 3/2π, the map 2xi(t) −
α∆ sin(2πxi(t)) mod 1 has an attracting fixed point at 0.
In this new regime, ν = δ0 is a self-consistent mea-
sure for the integrating cluster, meaning that the measure ν
gives rise to an approximated dynamical rule gi that has ν
as equilibrium measure. This can be easily verified since∫

sin(2πs)dδ0(s) = 0. We can then conclude that by select-
ing a value of the coupling strength such that α∆ is in the
range above, one expects all the states at the nodes in the in-
tegrating cluster to evolve towards the point 0 and fluctuate
around this point by ξ(t).
To obtain the range of α∆ such that the fluctuations of E are
around twice max ‖ξ‖, we notice that since ν = δ0 the stabil-
ity properties are given by the linear stability around x = 0.
Let u be a small displacement around 0 and let us denote at
J(α) = Dgi(0) the Jacobian of the map gi at 0. Then we
obtain that

u(t+ 1) =

t∑
i=0

J(α)iξi

and so

‖u‖ ≤ max ‖ξi‖/(1− J(α)),

which yields that 1/(1 − J(α)) < 2. Hence, we obtain
3/4π < α∆ < 5/4π. Because we measured α∆ as 0.169
in the data given we predict that a high quality coherent state
in the rich-clubwill appear then α∆ is increased by 40%. This
is a agreement with the experiments.

V. CAT CEREBRAL CORTEX

A. Bursting neurons with Chemical Synapesis

We simulated each mesoregion of the cat cerebral cor-
tex network with bursting Rulkov oscillators coupled through
chemical synapsis. For such dynamics the parameters are
given as β = 4.4 and ∆α = 0.05 where there is no syn-
chrony between oscillators Fig. 10. We use the simulated data
to reconstruct the network structure as shown in Figure 10.
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FIG. 9. Prediction of critical transition in a network with a rich-club motif. The level of average synchronisation, 〈E〉 of the integrating
cluster is shown for different values of the coupling strength α. Insets show E(t) plotted as a function of time for five points indicated by
arrows. For α values in the grey shaded region, 〈E〉 is close to zero and the integrating cluster exhibits collective behaviour. We can predict the
extrema of the shaded region by studying the effective network obtained from a time series without any knowledge of parameters, including
α0∆. For this prediction, we used the time series when α0∆ = 0.2 (red point).
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FIG. 10. Effective network of the cat cerebral cortex. We use the local dynamics as a spiking neuron coupled via electric synapses with the
parameters ∆α = 0.05 and β = 4.4. (a) The cat cerebral cortex network with nodes colour coded according to the four functional modules.
Rich-club members are indicated by red encircled nodes. (b) The covariance matrix of the data cannot detect communities. (c) The covariance
matrix of the fluctuations can distinguish clusters of interconnected nodes. (d) A model in the cat cortex constructed via the effective network
approach. From the matrix in (c) we can recover a representative effective network. The reconstructed network represents the real network in
(a) with good accuracy. See Methods for the details of the detection of communities and rich-club members.
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